Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Heliyon ; 10(9): e30374, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38726184

RESUMO

This research attempted to prepare silver-doped zinc oxide/magnesium oxide nanocomposite (Ag-doped ZnO/MgO-NCP) using Mentha pulegium plant extract. The synthesized NCP was investigated by X-ray diffraction analysis (XRD), Fourier Transform Infrared (FT-IR), Field Emission Scanning Electron Microscope (FESEM), Energy dispersive X-ray spectroscopy (EDX), Mapping, and UV-Visible analyses. The XRD data displayed cubic crystal structures for silver & magnesium oxide and a hexagonal framework for zinc oxide. Also, FESEM and PSA images of NCP pointed out, that the average size of the spherical morphology is about 10-16 nm, while the analysis of EDX confirmed the attendance of Zn, Mg, Ag, and O elements. Under UVA light, we tested the photocatalytic activity of NCP to the degradation of Methylene blue (MB) and Rhodamine B (RhB) dyes in various temperatures (400, 500, and 600 °C). The results of the photocatalytic test displayed that the degradation percentage of MB dye in pH = 9, nanocomposite amount ∼30 mg, and dye concentration ∼1 × 10 -5 M was about 98 %. We also evaluated the cytotoxicity of nanocomposite on cancer CT-26 cell line through the MTT method and obtained an IC50 value of 250 µg/mL.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38747225

RESUMO

BACKGROUND: Aging is a phenomenon which occurs over time and leads to the decay of living organisms. During the progression of aging, some age-associated diseases including cardiovascular disease, cancers, and neurological, mental, and physical disorders could develop. Genetic and epigenetic factors like microRNAs, as one of the post-transcriptional regulators of genes, play important roles in senescence. The self-renewal and differentiation capacity of mesenchymal stem cells makes them good candidates for regenerative medicine. OBJECTIVE: The objective of this study is to evaluate senescence-related miRNAs in human MSCs using bioinformatics analysis. METHODS: In this study, the Gene Expression Omnibus (GEO) database was used to investigate the senescence-related genome profile. Then, down-regulated genes were selected for further bioinformatics analysis with the assumption that their decreased expression is associated with an increased aging process. Considering that miRNAs can interfere in gene expression, miRNAs complementary to these genes were identified using bioinformatics software. RESULTS: Through bioinformatics analysis, we predicted hsa-miR-590-3p, hsa-miR-10b-3p, hsamiR- 548 family, hsa-miR-144-3p, and hsa-miR-30b-5p which involve in cellular senescence and the aging of human MSCs. CONCLUSION: miRNA mimics or anti-miRNA agents have the potential to be used as anti-aging tools for MSCs.

3.
Curr Pharm Des ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38661036

RESUMO

AIM: The study aimed to determine in vitro pharmacological effects of modified Ag nanoparticles (AgNPs). BACKGROUND: AgNPs are considered antimicrobial agents. However, the cytotoxicity of chemically synthesized AgNPs (cAgNPs) has raised challenges that limit their use. OBJECTIVE: The purpose of the study was to examine the antimicrobial and cytotoxicity effects of AgNPs synthesized using Cirsium congestum extract modified by chitosan/alginate AgNPS (Ch/ALG-gAgNPs). METHODS: Nanoparticles were characterized using TEM, DLS, XRD, and FTIR. Resistant strains of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were used for the antimicrobial analysis of Ch/ALG-gAgNPs using disc diffusion and microdilution methods. The effects of NPs on cell viability and apoptosis in L929 normal cells were determined using MTT assay and annexin/PI staining, respectively. RESULTS: Physicochemical characterizations confirmed Ch/ALG-gAgNPs to be spherical and uniformly dispersed, and their size ranged from 50 to 500 nm. Ch/ALG-gAgNPs inhibited the growth of microbial strains in a dose-dependent manner. The antibacterial effect of Ch/ALG-gAgNPs was significantly higher than cAgNPs. The Ch/ALG-gAgNPs showed little cytotoxicity against normal cells at concentrations less than 50 µg/ml. Cytotoxicity effects of Ch/ALG-gAgNP were less than cAgNPs. Flow cytometry and real-time PCR results showed a decrease in apoptosis percentage and BAX marker in the presence of Ch/ALG-gAgNPs relative to when the cell was treated with cAgNPs. CONCLUSION: Current findings introduce novel gAgNPs modified with chitosan/alginate for use in medicine.

4.
Curr Mol Pharmacol ; 17: e18761429246578, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389416

RESUMO

Ischemia-Reperfusion Injury (IRI) is a paradoxical phenomenon where removing the source of injury can cause additional damage. Ischemia reduces ATP production and intracellular pH, reducing oxidative reactions, increasing lactic acid release, and activating anaerobic metabolism. Reperfusion restores aerobic respiration and increases ROS production, leading to malfunction of transmembrane transport, activation of proteases, DNA dissolution, and protein denaturation, leading to apoptotic cell death. Nrf2 is a transcription factor that regulates cellular inflammation and oxidative responses. It is activated by oxidants and electrophiles and enhances detoxifying enzyme expression, maintaining redox homeostasis. It also activates ARE, which activates several ARE-regulated genes that favor cell survival by exhibiting resistance to oxidants and electrophiles. Nrf2 regulates the antioxidant defense system by producing phase II and antioxidant defense enzymes, including HO-1, NQO-1, gglutamylcysteine synthetase, and rate-limiting enzymes for glutathione synthesis. Nrf2 protects mitochondria from damage and supports mitochondrial function in stress conditions. Resveratrol is a stilbene-based compound with a wide variety of health benefits for humans, including antioxidant, anticarcinogenic, antitumor, and estrogenic/antiestrogenic. Resveratrol protects against IRI through several signaling pathways, including the Nrf2/ARE pathway. Here, we review the studies that investigated the mechanisms of resveratrol protection against IRI through modulation of the Nrf2 signaling pathway.


Assuntos
Antioxidantes , Traumatismo por Reperfusão , Humanos , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Traumatismo por Reperfusão/metabolismo , Oxidantes
5.
Curr Med Chem ; 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38362689

RESUMO

BACKGROUND: Commercial Minoxidil (MXD) is commonly used as a vasodilator agent of hair follicles for providing direct dermal papilla cell proliferation and consequently enhancing the rate of hair growth. OBJECTIVE: The current study attempted to improve the bioactivity and water solubility of MXD by producing nanocrystal structures and investigating the obtained hair growthstimulating activity on C57BL/6 mice. METHOD: The MXD nanoparticles (MXD-NPs) were prepared through a bead mill and ultrasonic process and characterized by DLS, XRD, UV-Vis, FTIR, FESEM, TEM, and Zeta-potential techniques. RESULT: The cytotoxicity of MXD-NPs was studied on human dermal fibroblast (HDF) by MTT assay. Lastly, we analyzed the comparative hair growth inductive activity of certain MXD-NPs concentrations on C57BL/6 mice. The stabled MXD-NPs (-46 mV, 21.9 nm) caused a significant increase in the hair growth rate of C57BL/6 mice by running a safe site-specific delivery mechanism on the targeted pilosebaceous follicles when compared to MXD. CONCLUSION: The MXD-NPs-receiving mice exhibited a greater rate of anagen/telogen follicular when compared with MXD-treated types, which verified the improvement of their hair re-growing and follicular-stimulative activities. Therefore, these outcomes confirmed the potential of MXD-NPs for substituting its commercial solution format as a safe and efficient iso-formulation structure.

6.
Toxicol Rep ; 12: 148-157, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38304697

RESUMO

Carbamate (CBs) is a class of insecticides which is being known as an important cause of intentional or accidental poisoning. CBs, cause carbamylation of acetylcholinesterase at neuronal synapses and neuromuscular junction. Exposure to CBs through skin contact, inhalation, or ingestion can result in significant cholinergic toxicity. This is due to the elevation of acetylcholine levels at ganglionic synapses found in both the sympathetic and parasympathetic nervous systems, as well as muscarinic receptors located in target organs of the parasympathetic nervous system, nicotinic receptors situated in skeletal muscle tissue, and the central nervous system. The association between human illnesses and environmental exposures to CBs have been extensively studied in several studies. Although CBs-triggered toxicity leads to overproduction of reactive oxygen species (ROS), the detailed association between the toxicity under CBs exposure and NFE2-related factor 2 (Nrf2) signaling pathways has not been completely clarified. In this review we aimed to summarize the latest findings on the functional interrelationship between carbamates compounds and Nrf2 signaling.

7.
Heliyon ; 10(2): e24212, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38298703

RESUMO

Background: The development of green chemistry methods involving plant-based nanoparticle synthesis presents an affordable and eco-friendly approach for wastewater treatment and color removal. This study aimed to synthesize ZnO nanoparticles using the sol-gel method with Salvia officinalis and Abelmoschus esculentus plants, examining their photocatalytic efficiency for organic dye removal. Methods: To compare the properties of ZnO nanoparticles, another type of ZnO-NPs was synthesized using the co-precipitation method. The characterization of synthesized nanoparticles was performed using thermogravimetric analysis (TGA-DTG), X-ray diffraction (XRD), Dynamic Light Scattering (DLS), Zeta potential (ZP), field emission scanning electron microscopy (FE-SEM), Energy Dispersive X-ray (EDX), Fourier transform infrared spectroscopy (FTIR), and UV-Vis spectrophotometry. Results: Based on XRD results, the average crystalline size of nanoparticles was calculated using the Debye-Scherer equation for synthesized nanoparticles using the S. officinalis at 22.99 nm and for the A. esculentus at 29.79 nm, and for the co-precipitation method at 18.83 nm. The FE-SEM images showed spherical ZnO nanoparticles. Photocatalytic properties of ZnO-NPs were investigated for remove of methylene blue organic dye in the presence of UV light. The pH 10 was identified as the best pH, which had the highest percentage of color degradation. All three types of nanoparticles were tested by up to 360 min to optimize the dyeing time. For A. esculentus, the highest percentage of color removal occurred in the first 90 min (41.0 %), for S. officinalis nanoparticles between 75 and 90 min (86.9 %), and for chemically synthesized nanoparticles between 30 and 45 min (100 %). Conclusions: In conclusion, the best MB dye degradation capacity belonged to co-precipitation ZnO nanoparticles followed by S. officinalis and A. esculentus nanoparticles.

8.
ChemistryOpen ; 13(4): e202300176, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38230849

RESUMO

This work introduces an easy method for producing Bi2O3, ZnO, ZnO-Bi2O3 nanoparticles (NPs) by Biebersteinia Multifida extract. Our products have been characterized through the outcomes which recorded with using powder X-ray diffractometry (PXRD), Raman, energy dispersive X-ray (EDX), field emission-scanning electron microscopy (FE-SEM), and Fourier-transform infrared (FT-IR) techniques. The finding of SEM presented porous structure and spherical morphology for Bi2O3 and ZnO NPs, respectively. While FE-SEM image of bimetallic nanoparticles showed both porous and spherical morphologies for them; so that spherical particles of ZnO have sat on the porous structure of Bi2O3 NPs. According to the PXRD results, the crystallite sizes of Bi2O3, ZnO and ZnO-Bi2O3 NPs have been obtained 57.69, 21.93, and 43.42 nm, respectively. Antibacterial performance of NPs has been studied on Staphylococcus epidermidis and Pseudomonas aeruginosa bacteria, to distinguish the minimum microbial inhibitory concentration (MIC). Antimicrobial outcomes have showed a better effect for ZnO-Bi2O3 NPs. Besides, wondering about the cytotoxic action against cancer cell lines, the MTT results have verified the intense cytotoxic function versus breast cancer cells (MCF-7). According to these observations, obtained products can prosper medical and biological applications.


Assuntos
Anti-Infecciosos , Antineoplásicos , Nanopartículas , Óxido de Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Óxido de Zinco/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas/química , Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química
9.
Iran J Basic Med Sci ; 27(2): 203-213, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38234668

RESUMO

Objectives: Zirconium-based metal-organic frameworks (MOFs) nanostructures, due to their capability of easy surface modification, are considered interesting structures for delivery. In the present study, the surfaces of UIO-66 and NH2-UIO-66 MOFs were modified by polyethyleneimine (PEI) 10000 Da, and their efficiency for plasmid delivery was evaluated. Materials and Methods: Two different approaches, were employed to prepare surface-modified nanoparticles. The physicochemical characteristics of the resulting nanoparticles, as well as their transfection efficiency and cytotoxicity, were investigated on the A549 cell line. Results: The sizes of DNA/nanocarriers for PEI-modified UIO-66 (PEI-UIO-66) were between 212-291 nm and 267-321 nm for PEI 6-bromohexanoic acid linked UIO-66 (PEI-HEX-UIO-66). The zeta potential of all was positive with the ranges of +16 to +20 mV and +23 to +26 mV for PEI-UIO-66 and PEI-HEX-UIO-66, respectively. Cellular assay results showed that the PEI linking method had a higher rate of gene transfection efficiency with minimal cytotoxicity than the wet impregnation method. The difference between transfection of modified nanoparticles compared to the PEI 10 kDa was not significant but the PEI-HEX-UIO-66 showed less cytotoxicity. Conclusion: The present study suggested that the post-synthetic modification of MOFs with PEI 10000 Da through EDC/NHS+6-bromohexanoic acid reaction can be considered as an effective approach for modifying MOFs' structure in order to obtain nanoparticles with better biological function in the gene delivery process.

10.
IEEE Trans Nanobioscience ; 23(1): 118-126, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37379200

RESUMO

In this study, gold nanoparticles (Au-NPs) were synthesized using HAuCl4 and quince seed mucilage (QSM) extract, which was characterized by conventional methods including Fourier transforms electron microscopy (FTIR), UV-Visible spectroscopy (UV-Vis), Field emission electron microscopy (FESEM), Transmission electron microscopy (TEM), Dynamic light spectroscopy (DLS), and Zeta-potential. The QSM acted as reductant and stabilizing agents simultaneously. The NP's anticancer activity was also investigated against osteosarcoma cell lines (MG-63), which showed an IC50 of [Formula: see text]/mL.


Assuntos
Nanopartículas Metálicas , Neoplasias , Rosaceae , Humanos , Ouro/farmacologia , Ouro/química , Nanopartículas Metálicas/química , Células MCF-7 , Espectroscopia de Infravermelho com Transformada de Fourier
11.
Heliyon ; 9(11): e21386, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37954273

RESUMO

Essential oils (EOs) are natural products called volatile oils or aromatic and ethereal oils derived from various parts of plants. They possess antioxidant and antimicrobial properties, which offer natural protection against a variety of pathogens and spoilage microorganisms. Studies conducted in the last decade have demonstrated the unique applications of these compounds in the fields of the food industry, agriculture, and skin health. This systematic article provides a summary of recent data pertaining to the effectiveness of EOs and their constituents in combating fungal pathogens through diverse mechanisms. Antifungal investigations involving EOs were conducted on multiple academic platforms, including Google Scholar, Science Direct, Elsevier, Springer, Scopus, and PubMed, spanning from April 2000 to October 2023. Various combinations of keywords, such as "essential oil," "volatile oils," "antifungal," and "Aspergillus species," were used in the search. Numerous essential oils have demonstrated both in vitro and in vivo antifungal activity against different species of Aspergillus, including A. niger, A. flavus, A. parasiticus, A. fumigatus, and A. ochraceus. They have also exhibited efficacy against other fungal species, such as Penicillium species, Cladosporium, and Alternaria. The findings of this study offer novel insights into inhibitory pathways and suggest the potential of essential oils as promising agents with antifungal and anti-mycotoxigenic properties. These properties could make them viable alternatives to conventional preservatives, thereby enhancing the shelf life of various food products.

12.
Int J Biol Macromol ; 253(Pt 8): 127594, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37890739

RESUMO

Leukemia is cancer of the body's blood-forming tissues, including the bone marrow and the lymphatic system. There are many types of leukemia that some of them occur in children and the others are more common in adults. Currently, there are many different chemotherapy agents for leukemia while chemoresistance increases the survival of the leukemic cells. One of the main reasons of chemoresistance, is a transcription factor called Nuclear factor erythroid 2-Related Factor 2 (NRF2). An increase in NRF2 expression in leukemic cells which are being treated with chemotherapy agents, can increase the survival of these cells in the presence of therapeutics. Accordingly, the inhibition of NRF2 by different methods as a cotreatment with classical chemotherapy agents, can be a promising procedure in leukemia treatment. In this study we focus on the association of NRF2 and leukemia and targeting it as a new therapeutic method in leukemia treatment.


Assuntos
Antineoplásicos , Leucemia , Neoplasias , Adulto , Criança , Humanos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Leucemia/tratamento farmacológico , Leucemia/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Medula Óssea/metabolismo
13.
Clin Nutr ESPEN ; 57: 575-586, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37739708

RESUMO

The food industry has always sought to produce products enriched with vitamins, probiotics, polyphenols, and other bioactive compounds to improve physiological function, enhance nutritional value, and provide health. These compounds are essential for human health, and their deficiency can lead to adverse effects. Therefore, food enrichment is an important strategy to improve the nutritional value and, in some cases, improve the quality of food. Recently, functional foods have been very popular around the world. Among food products, dairy products constitute a major part of people's diet, and due to the high consumption of dairy products, including yogurt, the enrichment of this product effectively reduces or prevents diseases associated with nutritional deficiencies. Most consumers generally accept yogurt due to its high nutritional value and low price. So, it can be considered a good candidate for enrichment with micronutrients and probiotics. In recent years, using functional foods to prevent various diseases has become a popular topic for research. In this study, the effect of fortified yogurt in preventing diseases and improving deficiencies has been investigated, and it has been proven that super healthy yogurt has a positive effect on human health.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Probióticos , Humanos , Iogurte , Vitaminas , Nível de Saúde
14.
Bioprocess Biosyst Eng ; 46(11): 1569-1578, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37700115

RESUMO

Cerium oxide nanoparticles (CeO2-NPs) and Zn-Ni dual-doped CeO2-NPs were synthesized through a green approach by the implication of zucchini peel (Cucurbita pepo) extract as a capping and reduction agent. All the synthesized samples were studied by the results of FTIR, UV-Vis, XRD, and FESEM/EDAX/PSA analyses. The Zn-Ni dual-doped CeO2-NPs contained a spherical morphology and their size was observed to increase at higher temperatures. The conducted MTT assay on the Huh-7 cell line displayed 50% of cells annihilation as a result of using undoped CeO2-NPs and Zn-Ni dual-doped CeO2-NPs at the inhibitory concentrations (IC50) of 700 and 185.4 µg/mL, respectively. We also evaluated the enzymatic functionality of SOD and CAT of undoped CeO2-NPs and dual-doped NPs and found it to be dose dependent. Moreover, Zn-Ni dual-doped CeO2-NPs intensified the CAT activity without causing any changes in SOD activity in similar concentrations.


Assuntos
Cério , Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Antioxidantes/farmacologia , Zinco , Níquel , Cério/farmacologia , Superóxido Dismutase
15.
Artigo em Inglês | MEDLINE | ID: mdl-37650949

RESUMO

Sulfur quantum dots (SQDs) as free heavy metal element quantum dots have promising applications in diagnosis and therapy; however, SQDs' in vivo biodistribution has not been studied. In the current study, SQDs were synthesized directly from cheap sublimated sulfur powder via a one-pot solvothermal method, and sucrose was used as a stabilizer to enhance stability and biocompatibility. The as-obtained SQDs with an average size of 4.6 nm exhibited great water dispersity, highly favorable quantum yield (21.5%), and uniformly spherical shape which were confirmed by UV-Vis, fluorescence spectrophotometer, TEM, and FESEM/EDX/PSA analyses. Moreover, the as-synthesized SQDs had very low cytotoxicity based on cancer (C26) and normal (L929) cell lines via MTT assay. And also, SQDs were radio-labeled directly by Technetium-99m (99mTc), which had good stability ranging from 86 to 99% in PBS and human serum. The SQDs' cell uptake on C26 and L929 cell lines demonstrated that cancer cells had more uptake than normal cells by increasing concentrations. Moreover, SQDs' in vivo biodistribution results displayed high kidney dose accumulation and rapid renal clearance, making them suitable for imaging and therapeutic applications.

16.
Biomed Pharmacother ; 165: 114972, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37481931

RESUMO

The rising incidence of breast cancer has been a significant source of concern in the medical community. Regarding the adverse effects and consequences of current treatments, cancers' health, and socio-economical aspects have become more complicated, leaving research aimed at improved or new treatments on top priority. Medicinal herbs contain multitarget compounds that can control cancer development and advancement. Owing to Nigella Sativa's elements, it can treat many disorders. Thymoquinone (TQ) is a natural chemical derived from the black seeds of Nigella sativa Linn proved to have anti-cancer and anti-inflammatory properties. TQ interferes in a broad spectrum of tumorigenic procedures and inhibits carcinogenesis, malignant development, invasion, migration, and angiogenesis owing to its multitargeting ability. It effectively facilitates miR-34a up-regulation, regulates the p53-dependent pathway, and suppresses Rac1 expression. TQ promotes apoptosis and controls the expression of pro- and anti-apoptotic genes. It has also been shown to diminish the phosphorylation of NF-B and IKK and decrease the metastasis and ERK1/2 and PI3K activity. We discuss TQ's cytotoxic effects for breast cancer treatment with a deep look at the relevant stimulatory or inhibitory signaling pathways. This review discusses the various forms of polymeric and non-polymeric nanocarriers (NC) and the encapsulation of TQ for increasing oral bioavailability and enhanced in vitro and in vivo efficacy of TQ-combined treatment with different chemotherapeutic agents against various breast cancer cell lines. This study can be useful to a broad scientific community, comprising pharmaceutical and biological scientists, as well as clinical investigators.


Assuntos
Antineoplásicos , Neoplasias da Mama , Nigella sativa , Humanos , Feminino , Neoplasias da Mama/patologia , Apoptose , Antineoplásicos/farmacologia , Benzoquinonas/uso terapêutico , Nigella sativa/química
17.
Rev Environ Health ; 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37434382

RESUMO

OBJECTIVE: Numerous evidence indicates the association between polychlorinated biphenyls (PCBs), an endocrine disrupter, with thyroid hormone disruption, contradictory findings also exist. Herein, we tried to address this question by performing a scoping review. CONTENT: The search was performed on PubMed, Scopus, Web of Science, and Google Scholar databases from 2010 onwards. Animal studies on PCBs' effect on thyroid function were searched. The SYRCLE's RoB scale assessed the risk of bias. I2 and Q tests are used for investigating heterogeneity. A random-effects model with the pooled standard means difference (SMD) and 95 % confidence interval (CI) was performed for the TSH, TT4, TT3, and FT4 outcomes using Comprehensive Meta-Analyses (CMA) Software version 3. Also, we conducted subgroup analyses based on the different types of PCB. The initial search identified 1,279 publications from the main databases 26 of them fulfilled our eligibility criteria for the study, and then five studies among selected studies had sufficient data for analysis. Meta-analysis of data revealed that Aroclor 1260 (SDM: -0.47, 95 % CI: -0.92, -0.01, p=0.044) and PCB 126 (SDM: 0.17, 95 % CI: -0.40, 0.75, p=0.559) significantly increased TSH concentration in the exposed groups vs. the control groups. Related to the effects of PCBs on the TT4, our findings indicated a significant reduction the TT4 concentration of animals exposed to Aroclor 1260 (SDM: -5.62, 95 % CI: -8.30, -2.94, p=0.0001), PCB 118 (SDM: -6.24, 95 % CI: -7.76, -4.72, p=0.0001), PCB 126 (SDM: -1.81, 95 % CI: -2.90, -0.71, p=0.001), and PCB 153 (SDM: -1.32, 95 % CI: -2.29, -0.35, p=0.007) vs. the controls. Our meta-analysis indicated a significant increase in TT3 concentration following exposure to PCB 118 and PCB 153 (SDM: -0.89, 95 % CI: -1.36, -0.42, p=0.0001, and SDM: -1.45, 95 % CI: -2.15, -0.75, p=0.0001, respectively). Aroclor 1254 and PCB 126 significantly decreased TT3 concentration (SDM: 1.25, 95 % CI: 0.29, 2.21, p=0.01 and SDM: 3.33, 95 % CI: 2.49, 4.18, p=0.0001, respectively). PCB 126 significantly decreased FT4 in the exposed groups vs. the control groups (SDM: -7.80, 95 % CI: -11.51, -5.35, p=0.0001). SUMMARY: Our findings showed an association between PCBs exposure and hypothyroidism in rodents, fish, and chicken embryos. OUTLOOK: Regarding to the most evidence of hypothyroidism effects of PCBs in animal species, it is necessary to consider large cohort studies to address the association between PCBs exposure and thyroid function impairment in humans.

18.
Bioprocess Biosyst Eng ; 46(8): 1163-1173, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37326639

RESUMO

The aim of this study is the green synthesis of cerium oxide nanoparticles (CeO2-NPs) using a natural capping agent and its application in water and wastewater treatment. This study presents the biosynthesis of CeO2-NPs by the exertion of a green method using zucchini (Cucurbita pepo) extract as a capping agent. Synthesized CeO2-NPs were distinguished through TGA/DTA, FT-IR, XRD, FESEM/TEM and EDX/PSA, and DRS procedures. According to the XRD pattern of NPs, the crystallinity structure was a face-centered cubic (fcc) with an Fm3m space group and the size was estimated at 30 nm. The spherical morphology of NPs was confirmed through FESEM/TEM images. In the following, the photocatalytic property of NPs was investigated by the decolorization of methylene blue (MB) dye within UV-A light. Also, the cytotoxicity of NPs on the CT26 cell line was evaluated through the MTT test, and no toxicity was observed in the results, which indicates their biocompatibility.


Assuntos
Cério , Nanopartículas Metálicas , Nanopartículas , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/química , Nanopartículas/química , Cério/química , Extratos Vegetais/química , Nanopartículas Metálicas/química
19.
Lasers Med Sci ; 38(1): 151, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37378703

RESUMO

The photodynamic treatment is a non-aggressive and clinically accepted procedure for removing selected cancer cells with the activation of a photosensitizer agent at a specific light. In this study, the zinc porphyrin (Zn[TPP]) was prepared and encapsulated into the MIL-101 (Zn[TPP]@MIL-101). It was used in photodynamic therapy (PDT) against MCF-7 breast cancer cells under a red light-emitting diode. The structure, morphology, surface area, and compositional changes were investigated using conventional characterization methods including FTIR, FESEM, EDX, and BET analyses. The MTT assay was performed under light and dark conditions to explore the ability of Zn[TPP]@MIL-101 in PDT. The results have demonstrated the IC50 of 14.3 and 81.6 mg/mL for light and dark groups, respectively. As the IC50 revealed, the Zn[TPP]@MIL-101 could efficiently eradicate cancer cells using PDT.


Assuntos
Neoplasias da Mama , Fotoquimioterapia , Porfirinas , Humanos , Feminino , Porfirinas/uso terapêutico , Fotoquimioterapia/métodos , Neoplasias da Mama/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico , Zinco/farmacologia , Zinco/uso terapêutico , Linhagem Celular Tumoral
20.
J Environ Health Sci Eng ; 21(1): 93-105, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37159737

RESUMO

The goal of the current paper was a synthesis of Amino-functionalized Fe3O4@SiO2 core-shell magnetic nanoparticles as a unique efficient photocatalyst for removing organic dyes from aqueous environments. The magnetic Fe3O4@SiO2 core-shell was produced by a silica source to avoid aggregation by the co-precipitation method. Next, functionalized by using 3-Aminopropyltriethoxysilane (APTES) via a post-synthesis link. The chemical structure, magnetic properties, and shape of the manufactured photocatalyst (Fe3O4@SiO2-NH2) were described by XRD, VSM, FT-IR, FESEM, EDAX, and DLS/Zeta potential analyses. The XRD findings approved the successful synthesis of nanoparticles. The photocatalytic activity of Fe3O4@SiO2-NH2 nanoparticles was examined for MB degradation and the degradation performance was about 90% in the optimum conditions. Also, the cytotoxicity of Fe3O4, Fe3O4@SiO2 core-shell, and Fe3O4@SiO2-NH2 nanoparticles was examined on CT-26 cells using an MTT assay, the finding has shown that nanoparticles can be used for inhibiting cancer cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA