Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Neuroimage ; 290: 120557, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38423264

RESUMO

BACKGROUND: Time series analysis is critical for understanding brain signals and their relationship to behavior and cognition. Cluster-based permutation tests (CBPT) are commonly used to analyze a variety of electrophysiological signals including EEG, MEG, ECoG, and sEEG data without a priori assumptions about specific temporal effects. However, two major limitations of CBPT include the inability to directly analyze experiments with multiple fixed effects and the inability to account for random effects (e.g. variability across subjects). Here, we propose a flexible multi-step hypothesis testing strategy using CBPT with Linear Mixed Effects Models (LMEs) and Generalized Linear Mixed Effects Models (GLMEs) that can be applied to a wide range of experimental designs and data types. METHODS: We first evaluate the statistical robustness of LMEs and GLMEs using simulated data distributions. Second, we apply a multi-step hypothesis testing strategy to analyze ERPs and broadband power signals extracted from human ECoG recordings collected during a simple image viewing experiment with image category and novelty as fixed effects. Third, we assess the statistical power differences between analyzing signals with CBPT using LMEs compared to CBPT using separate t-tests run on each fixed effect through simulations that emulate broadband power signals. Finally, we apply CBPT using GLMEs to high-gamma burst data to demonstrate the extension of the proposed method to the analysis of nonlinear data. RESULTS: First, we found that LMEs and GLMEs are robust statistical models. In simple simulations LMEs produced highly congruent results with other appropriately applied linear statistical models, but LMEs outperformed many linear statistical models in the analysis of "suboptimal" data and maintained power better than analyzing individual fixed effects with separate t-tests. GLMEs also performed similarly to other nonlinear statistical models. Second, in real world human ECoG data, LMEs performed at least as well as separate t-tests when applied to predefined time windows or when used in conjunction with CBPT. Additionally, fixed effects time courses extracted with CBPT using LMEs from group-level models of pseudo-populations replicated latency effects found in individual category-selective channels. Third, analysis of simulated broadband power signals demonstrated that CBPT using LMEs was superior to CBPT using separate t-tests in identifying time windows with significant fixed effects especially for small effect sizes. Lastly, the analysis of high-gamma burst data using CBPT with GLMEs produced results consistent with CBPT using LMEs applied to broadband power data. CONCLUSIONS: We propose a general approach for statistical analysis of electrophysiological data using CBPT in conjunction with LMEs and GLMEs. We demonstrate that this method is robust for experiments with multiple fixed effects and applicable to the analysis of linear and nonlinear data. Our methodology maximizes the statistical power available in a dataset across multiple experimental variables while accounting for hierarchical random effects and controlling FWER across fixed effects. This approach substantially improves power leading to better reproducibility. Additionally, CBPT using LMEs and GLMEs can be used to analyze individual channels or pseudo-population data for the comparison of functional or anatomical groups of data.


Assuntos
Encéfalo , Projetos de Pesquisa , Humanos , Reprodutibilidade dos Testes , Encéfalo/fisiologia , Modelos Estatísticos , Modelos Lineares
2.
World Neurosurg ; 181: e833-e840, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37925150

RESUMO

BACKGROUND: The Combination Adenovirus + Pembrolizumab to Trigger Immune Virus Effects (CAPTIVE) study is a phase II clinical trial testing the efficacy of a recombinant adenovirus DNX-2401 combined with the immune checkpoint inhibitor pembrolizumab. Here, we report the first patients in this study who underwent viral delivery through real-time magnetic resonance imaging (MRI) stereotaxis-guided SmartFlow convection delivery of DNX-2401. METHODS: Patients who underwent real-time MRI-guided DNX-2401 delivery through the SmartFlow convection catheter were prospectively followed. RESULTS: Precise catheter placement was achieved in all patients treated, and no adverse events were noted. Average radial error from target was 0.9 mm. Average procedural time was 3 hours 16 minutes and was comparable to other convection-enhanced delivery techniques. In 2 patients, delivery of DNX-2401 was visualized as >1 cm maximal diameter of T1 hypointensity infusate on MRI obtained immediately after completion of viral infusion. These patients exhibited partial response based on Response Assessment in Neuro-Oncology assessment. The remaining patient showed <1 cm maximal diameter of infusate on immediate postinfusion MRI and showed disease progression on subsequent MRI. CONCLUSIONS: Our pilot case series supports compatibility of the SmartFlow system with oncolytic adenovirus delivery and provides the basis for future validation studies.


Assuntos
Convecção , Sistemas de Liberação de Medicamentos , Humanos , Catéteres , Sistemas de Liberação de Medicamentos/métodos , Imageamento por Ressonância Magnética/métodos , Projetos Piloto , Estudos Prospectivos
3.
bioRxiv ; 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37425723

RESUMO

Exploration-exploitation decision-making is a feature of daily life that is altered in a number of neuropsychiatric conditions. Humans display a range of exploration and exploitation behaviors, which can be affected by apathy and anxiety. It remains unknown how factors underlying decision-making generate the spectrum of observed exploration-exploitation behavior and how they relate to states of anxiety and apathy. Here, we report a latent structure underlying sequential exploration and exploitation decisions that explains variation in anxiety and apathy. 1001 participants in a gender-balanced sample completed a three-armed restless bandit task along with psychiatric symptom surveys. Using dimensionality reduction methods, we found that decision sequences reduced to a low-dimensional manifold. The axes of this manifold explained individual differences in the balance between states of exploration and exploitation and the stability of those states, as determined by a statistical mechanics model of decision-making. Position along the balance axis was correlated with opposing symptoms of behavioral apathy and anxiety, while position along the stability axis correlated with the level of emotional apathy. This result resolves a paradox over how these symptoms can be correlated in samples but have opposite effects on behavior. Furthermore, this work provides a basis for using behavioral manifolds to reveal relationships between behavioral dynamics and affective states, with important implications for behavioral measurement approaches to neuropsychiatric conditions.

4.
Neuroradiology ; 65(8): 1301-1309, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37347460

RESUMO

PURPOSE: The peripheral course of the trigeminal nerves is complex and spans multiple bony foramen and tissue compartments throughout the face. Diffusion tensor imaging of these nerves is difficult due to the complex tissue interfaces and relatively low MR signal. The purpose of this work is to develop a method for reliable diffusion tensor imaging-based fiber tracking of the peripheral branches of the trigeminal nerve. METHODS: We prospectively acquired imaging data from six healthy adult participants with a 3.0-Tesla system, including T2-weighted short tau inversion recovery with variable flip angle (T2-STIR-SPACE) and readout segmented echo planar diffusion weighted imaging sequences. Probabilistic tractography of the ophthalmic, infraorbital, lingual, and inferior alveolar nerves was performed manually and assessed by two observers who determined whether the fiber tracts reached defined anatomical landmarks using the T2-STIR-SPACE volume. RESULTS: All nerves in all subjects were tracked beyond the trigeminal ganglion. Tracts in the inferior alveolar and ophthalmic nerve exhibited the strongest signal and most consistently reached the most distal landmark (58% and 67%, respectively). All tracts of the inferior alveolar and ophthalmic nerve extended beyond their respective third benchmarks. Tracts of the infraorbital nerve and lingual nerve were comparably lower-signal and did not consistently reach the furthest benchmarks (9% and 17%, respectively). CONCLUSION: This work demonstrates a method for consistently identifying and tracking the major nerve branches of the trigeminal nerve with diffusion tensor imaging.


Assuntos
Imagem de Tensor de Difusão , Nervo Trigêmeo , Adulto , Humanos , Imagem de Tensor de Difusão/métodos , Nervo Trigêmeo/diagnóstico por imagem , Imagem Ecoplanar
5.
J Neuroeng Rehabil ; 20(1): 59, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37138361

RESUMO

Multiple studies have corroborated the restoration of volitional motor control after motor-complete spinal cord injury (SCI) through the use of epidural spinal cord stimulation (eSCS), but rigorous quantitative descriptions of muscle coordination have been lacking. Six participants with chronic, motor and sensory complete SCI underwent a brain motor control assessment (BMCA) consisting of a set of structured motor tasks with and without eSCS. We investigated how muscle activity complexity and muscle synergies changed with and without stimulation. We performed this analysis to better characterize the impact of stimulation on neuromuscular control. We also recorded data from nine healthy participants as controls. Competition exists between the task origin and neural origin hypotheses underlying muscle synergies. The ability to restore motor control with eSCS in participants with motor and sensory complete SCI allows us to test whether changes in muscle synergies reflect a neural basis in the same task. Muscle activity complexity was computed with Higuchi Fractal Dimensional (HFD) analysis, and muscle synergies were estimated using non-negative matrix factorization (NNMF) in six participants with American Spinal Injury Association (ASIA) Impairment Score (AIS) A. We found that the complexity of muscle activity was immediately reduced by eSCS in the SCI participants. We also found that over the follow-up sessions, the muscle synergy structure of the SCI participants became more defined, and the number of synergies decreased over time, indicating improved coordination between muscle groups. Lastly, we found that the muscle synergies were restored with eSCS, supporting the neural hypothesis of muscle synergies. We conclude that eSCS restores muscle movements and muscle synergies that are distinct from those of healthy, able-bodied controls.


Assuntos
Traumatismos da Medula Espinal , Estimulação da Medula Espinal , Humanos , Músculo Esquelético/fisiologia , Eletromiografia , Estimulação da Medula Espinal/métodos , Medula Espinal
7.
bioRxiv ; 2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37034791

RESUMO

Background: Time series analysis is critical for understanding brain signals and their relationship to behavior and cognition. Cluster-based permutation tests (CBPT) are commonly used to analyze a variety of electrophysiological signals including EEG, MEG, ECoG, and sEEG data without a priori assumptions about specific temporal effects. However, two major limitations of CBPT include the inability to directly analyze experiments with multiple fixed effects and the inability to account for random effects (e.g. variability across subjects). Here, we propose a flexible multi-step hypothesis testing strategy using CBPT with Linear Mixed Effects Models (LMEs) and Generalized Linear Mixed Effects Models (GLMEs) that can be applied to a wide range of experimental designs and data types. Methods: We first evaluate the statistical robustness of LMEs and GLMEs using simulated data distributions. Second, we apply a multi-step hypothesis testing strategy to analyze ERPs and broadband power signals extracted from human ECoG recordings collected during a simple image viewing experiment with image category and novelty as fixed effects. Third, we assess the statistical power differences between analyzing signals with CBPT using LMEs compared to CBPT using separate t-tests run on each fixed effect through simulations that emulate broadband power signals. Finally, we apply CBPT using GLMEs to high-gamma burst data to demonstrate the extension of the proposed method to the analysis of nonlinear data. Results: First, we found that LMEs and GLMEs are robust statistical models. In simple simulations LMEs produced highly congruent results with other appropriately applied linear statistical models, but LMEs outperformed many linear statistical models in the analysis of "suboptimal" data and maintained power better than analyzing individual fixed effects with separate t-tests. GLMEs also performed similarly to other nonlinear statistical models. Second, in real world human ECoG data, LMEs performed at least as well as separate t-tests when applied to predefined time windows or when used in conjunction with CBPT. Additionally, fixed effects time courses extracted with CBPT using LMEs from group-level models of pseudo-populations replicated latency effects found in individual category-selective channels. Third, analysis of simulated broadband power signals demonstrated that CBPT using LMEs was superior to CBPT using separate t-tests in identifying time windows with significant fixed effects especially for small effect sizes. Lastly, the analysis of high-gamma burst data using CBPT with GLMEs produced results consistent with CBPT using LMEs applied to broadband power data. Conclusions: We propose a general approach for statistical analysis of electrophysiological data using CBPT in conjunction with LMEs and GLMEs. We demonstrate that this method is robust for experiments with multiple fixed effects and applicable to the analysis of linear and nonlinear data. Our methodology maximizes the statistical power available in a dataset across multiple experimental variables while accounting for hierarchical random effects and controlling FWER across fixed effects. This approach substantially improves power and accuracy leading to better reproducibility. Additionally, CBPT using LMEs and GLMEs can be used to analyze individual channels or pseudo-population data for the comparison of functional or anatomical groups of data.

8.
Artigo em Inglês | MEDLINE | ID: mdl-36894434

RESUMO

BACKGROUND: Stress is a major risk factor for depression, and both are associated with important changes in decision-making patterns. However, decades of research have only weakly connected physiological measurements of stress to the subjective experience of depression. Here, we examined the relationship between prolonged physiological stress, mood, and explore-exploit decision making in a population navigating a dynamic environment under stress: health care workers during the COVID-19 pandemic. METHODS: We measured hair cortisol levels in health care workers who completed symptom surveys and performed an explore-exploit restless-bandit decision-making task; 32 participants were included in the final analysis. Hidden Markov and reinforcement learning models assessed task behavior. RESULTS: Participants with higher hair cortisol exhibited less exploration (r = -0.36, p = .046). Higher cortisol levels predicted less learning during exploration (ß = -0.42, false discovery rate [FDR]-corrected p [pFDR] = .022). Importantly, mood did not independently correlate with cortisol concentration, but rather explained additional variance (ß = 0.46, pFDR = .022) and strengthened the relationship between higher cortisol and lower levels of exploratory learning (ß = -0.47, pFDR = .022) in a joint model. These results were corroborated by a reinforcement learning model, which revealed less learning with higher hair cortisol and low mood (ß = -0.67, pFDR = .002). CONCLUSIONS: These results imply that prolonged physiological stress may limit learning from new information and lead to cognitive rigidity, potentially contributing to burnout. Decision-making measures link subjective mood states to measured physiological stress, suggesting that they should be incorporated into future biomarker studies of mood and stress conditions.


Assuntos
COVID-19 , Depressão , Humanos , Depressão/psicologia , Estresse Psicológico , Hidrocortisona/análise , Pandemias , Estresse Fisiológico
9.
Front Pain Res (Lausanne) ; 4: 1072786, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937564

RESUMO

Objectives: This article presents a method-including hardware configuration, sampling rate, filtering settings, and other data analysis techniques-to measure evoked compound action potentials (ECAPs) during spinal cord stimulation (SCS) in humans with externalized percutaneous electrodes. The goal is to provide a robust and standardized protocol for measuring ECAPs on the non-stimulation contacts and to demonstrate how measured signals depend on hardware and processing decisions. Methods: Two participants were implanted with percutaneous leads for the treatment of chronic pain with externalized leads during a trial period for stimulation and recording. The leads were connected to a Neuralynx ATLAS system allowing us to simultaneously stimulate and record through selected electrodes. We examined different hardware settings, such as online filters and sampling rate, as well as processing techniques, such as stimulation artifact removal and offline filters, and measured the effects on the ECAPs metrics: the first negative peak (N1) time and peak-valley amplitude. Results: For accurate measurements of ECAPs, the hardware sampling rate should be least at 8 kHz and should use a high pass filter with a low cutoff frequency, such as 0.1 Hz, to eliminate baseline drift and saturation (railing). Stimulation artifact removal can use a double exponential or a second-order polynomial. The polynomial fit is 6.4 times faster on average in computation time than the double exponential, while the resulting ECAPs' N1 time and peak-valley amplitude are similar between the two. If the baseline raw measurement drifts with stimulation, a median filter with a 100-ms window or a high pass filter with an 80-Hz cutoff frequency preserves the ECAPs. Conclusions: This work is the first comprehensive analysis of hardware and processing variations on the observed ECAPs from SCS leads. It sets recommendations to properly record and process ECAPs from the non-stimulation contacts on the implantable leads.

11.
J Neurosurg ; 139(3): 625-632, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36840736

RESUMO

OBJECTIVE: Percutaneous radiofrequency rhizotomy is a common procedure for trigeminal neuralgia (TN) that creates thermocoagulative lesions in the trigeminal ganglion. Lesioning parameters for the procedure are left to the individual surgeon's discretion, and published guidance is primarily anecdotal. The purpose of this work was to assess the role of lesioning temperature on long-term surgical outcomes. METHODS: This was a retrospective analysis of patients who underwent percutaneous radiofrequency rhizotomy from 2009 to 2020. Patient data, including demographics, disease presentation, surgical treatment, and outcomes, were collected from medical records. The primary endpoint was the recurrence of TN pain. Univariate and multivariate Cox proportional hazards regressions were used to assess the impact of chosen covariates on pain-free survival. RESULTS: A total of 280 patients who had undergone 464 procedures were included in the analysis. Overall, roughly 80% of patients who underwent rhizotomy would have a recurrence within 10 years. Lower lesion temperature was predictive of longer periods without pain recurrence (HR 1.05, p < 0.001). The inclusion of lesion time, postoperative numbness, prior history of radiofrequency rhizotomy, surgeon, and multiple sclerosis as confounding variables did not affect the hazard ratio or the statistical significance of this finding. Postoperative numbness and the absence of multiple sclerosis were significant protective factors in the model. CONCLUSIONS: The study findings suggest that lower lesion temperatures and, separately, postoperative numbness result in improved long-term outcomes for patients with TN who undergo percutaneous radiofrequency rhizotomies. Given the limitations of retrospective analysis, the authors suggest that a prospective multisite clinical trial testing lesion temperatures would provide definitive guidance on this issue with specific recommendations about the number needed to treat and trial design.


Assuntos
Esclerose Múltipla , Neuralgia do Trigêmeo , Humanos , Rizotomia , Neuralgia do Trigêmeo/cirurgia , Estudos Retrospectivos , Temperatura , Resultado do Tratamento , Estudos Prospectivos , Hipestesia , Dor/cirurgia
12.
J Neurotrauma ; 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36719784

RESUMO

Abstract Epidural spinal cord stimulation (eSCS) of the lower thoracic spinal cord has been shown to partially restore volitional movement in patients with complete chronic spinal cord injury (cSCI). Combining eSCS with intensive locomotor training improves motor function, including standing and stepping, but many patients with cSCI suffer from long-standing muscle atrophy and loss of bone mineral density, which may prohibit safe implementation. Safe, accessible, and effective avenues for pairing neuromodulation with activity-based therapy remain unexplored. Cycling is one such option that can be utilized as an eSCS therapy given its low-risk and low-weight-bearing requirement. We investigated the feasibility and kinematics of motor-assisted and passive cycle-based therapy for cSCI patients with epidural spinal cord stimulation. Seven participants who underwent spinal cord stimulation surgery in the Epidural Stimulation After Neurologic Damage (E-STAND) trial (NCT03026816) participated in a cycling task using the motor assist MOTOmed Muvi 300. A factorial design was used such that participants were asked to cycle with and without conscious effort with and without stimulation. We used mixed effects models assessing maximum power output and time pedaling unassisted to evaluate the interaction between stimulation and conscious effort. Cycling was well-tolerated and we observed no adverse events, including in participants up to 17 years post-initial injury and up to 58 years old. All participants were found to be able to pedal without motor assist, which primarily occurred when stimulation and effort were applied together (p = 0.001). Additionally, the combination of stimulation and intention was significantly associated with higher maximum power production (p < 0.0001) and distance pedaled (p = 0.0001). No association was found between volitional movement and participant factors: age, time since injury, and spinal cord atrophy. With stimulation and conscious effort, all participants were able to achieve active cycling without motor assistance. Thus, our stationary cycling factorial study design demonstrated volitional movement restoration with eSCS in a diverse study population of cSCI participants. Further, motor-assist cycling was well-tolerated without any adverse events. Cycling has the potential to be a safe research assessment and physical therapy modality for cSCI patients utilizing eSCS who have a high risk of injury with weight bearing exercise. The cycling modality in this study was demonstrated to be a straightforward assessment of motor function and safe for all participants regardless of age or time since initial injury.

13.
Neuromodulation ; 26(7): 1371-1380, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36517395

RESUMO

OBJECTIVES: Epidural spinal cord stimulation (eSCS) has shown promise for restoring some volitional motor control after spinal cord injury (SCI). Maximizing therapeutic response requires effective spatial stimulation generated through careful configuration of anodes and cathodes on the eSCS lead. By exploring the way the spatial distribution of low frequency stimulation affects muscle activation patterns, we investigated the spatial specificity of stimulation-evoked responses for targeted muscle groups for restoration after chronic SCI (cSCI) in participants in the Epidural Stimulation After Neurologic Damage (E-STAND) trial. MATERIALS AND METHODS: Fifteen participants with Abbreviated Injury Scale A cSCI from the E-STAND study were evaluated with a wide range of bipolar spatial patterns. Surface electromyography captured stimulation-evoked responses from the rectus abdominis (RA), intercostal, paraspinal, iliopsoas, rectus femoris (RF), tibialis anterior (TA), extensor hallucis longus (EHL), and gastrocnemius muscle groups bilaterally. Peak-to-peak amplitudes were analyzed for each pulse across muscles. Stimulation patterns with dipoles parallel (vertical configurations), perpendicular (horizontal configurations), and oblique (diagonal configurations) relative to the rostral-caudal axis were evaluated. RESULTS: Cathodic stimulation in the transverse plane indicated ipsilaterally biased activation in RA, intercostal, paraspinal, iliopsoas, RF, TA, EHL, and gastrocnemius muscles (p < 0.05). We found that caudal cathodic stimulation was significantly more activating only in the RF and EHL muscle groups than in the rostral (p < 0.037 and p < 0.006, respectively). Oblique stimulation was found to be more activating in the RA, intercostal, paraspinal, iliopsoas, and TA muscle groups than in the transverse (p < 0.05). CONCLUSIONS: Cathodic stimulation provides uniform specificity for targeting laterality. Few muscle groups responded specifically to variation in rostral/caudal stimulation, and oblique stimulation improved stimulation responses when compared with horizontal configurations. These relations may enable tailored targeting of muscle groups, but the surprising amount of variation observed suggests that monitoring these evoked muscle responses will play a key role in this tailoring process. CLINICAL TRIAL REGISTRATION: The Clinicaltrials.gov registration number for the study is NCT03026816.


Assuntos
Traumatismos da Medula Espinal , Estimulação da Medula Espinal , Humanos , Eletrodos , Eletromiografia , Músculo Esquelético/fisiologia , Medula Espinal/fisiologia , Traumatismos da Medula Espinal/terapia
14.
Epilepsia ; 64(1): 6-16, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36300659

RESUMO

Visual review of intracranial electroencephalography (iEEG) is often an essential component for defining the zone of resection for epilepsy surgery. Unsupervised approaches using machine and deep learning are being employed to identify seizure onset zones (SOZs). This prompts a more comprehensive understanding of the reliability of visual review as a reference standard. We sought to summarize existing evidence on the reliability of visual review of iEEG in defining the SOZ for patients undergoing surgical workup and understand its implications for algorithm accuracy for SOZ prediction. We performed a systematic literature review on the reliability of determining the SOZ by visual inspection of iEEG in accordance with best practices. Searches included MEDLINE, Embase, Cochrane Library, and Web of Science on May 8, 2022. We included studies with a quantitative reliability assessment within or between observers. Risk of bias assessment was performed with QUADAS-2. A model was developed to estimate the effect of Cohen kappa on the maximum possible accuracy for any algorithm detecting the SOZ. Two thousand three hundred thirty-eight articles were identified and evaluated, of which one met inclusion criteria. This study assessed reliability between two reviewers for 10 patients with temporal lobe epilepsy and found a kappa of .80. These limited data were used to model the maximum accuracy of automated methods. For a hypothetical algorithm that is 100% accurate to the ground truth, the maximum accuracy modeled with a Cohen kappa of .8 ranged from .60 to .85 (F-2). The reliability of reviewing iEEG to localize the SOZ has been evaluated only in a small sample of patients with methodologic limitations. The ability of any algorithm to estimate the SOZ is notably limited by the reliability of iEEG interpretation. We acknowledge practical limitations of rigorous reliability analysis, and we propose design characteristics and study questions to further investigate reliability.


Assuntos
Epilepsia do Lobo Temporal , Convulsões , Humanos , Convulsões/diagnóstico , Convulsões/cirurgia , Reprodutibilidade dos Testes , Eletroencefalografia/métodos , Epilepsia do Lobo Temporal/cirurgia , Eletrocorticografia/métodos
15.
Neuromodulation ; 26(5): 1095-1101, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35953425

RESUMO

OBJECTIVES: Lead migration (LM) after spinal cord stimulation (SCS) implantation surgery is the most common device-related complication. Our study of lead and implantable pulse generator (IPG) migration using a large administrative claims data base aims to understand rates, risk factors, and outcomes after SCS implantation. MATERIALS AND METHODS: This retrospective cohort study used the IBM® MarketScan® (Armonk, NY) Commercial and Medicare Supplemental Databases from 2016 to 2018. Adult patients who underwent SCS surgical procedures with at least 90 days of follow-up were identified using Current Procedural Terminology (CPT®) codes. Patients with LM and IPG migration after SCS surgery were identified using the International Classification of Diseases, 10th Revision, Clinical Modification (ICD-10 CM) codes. Patients who underwent revision surgery after SCS implantation were identified using the CPT codes and ICD-10 CM codes. In addition, patient characteristics associated with LM or IPG migration, the temporal relationship of migration diagnosis, and revision surgery were evaluated in the cohort. Continuous outcomes were compared between groups using the two-sample Student t-test. The Fisher exact test was used to compare categorical outcomes between groups. RESULTS: A total of 7322 patients (64.4% percutaneous SCS) underwent SCS surgery during the study period. A total of 141 patients (1.9%) had LM or IPG migration. Of those, 116 patients (1.6%) had LM only; 18 patients (0.2%) had IPG migration; and seven patients (0.1%) had LM and IPG migration. The mean duration for migration diagnosis after initial SCS implantation was 168 (±163.1) days. The mean duration to revision surgery after the migration diagnosis was 12.3 (±35.2) days only. Most patients with migration (105, 74.5%) underwent revision surgery. Only younger age (p = 0.02) was associated with migration in this study. CONCLUSIONS: LM and pulse generator migration that required revision surgery occurred in a small proportion of patients who underwent SCS surgical procedures.


Assuntos
Estimulação da Medula Espinal , Adulto , Humanos , Idoso , Estados Unidos/epidemiologia , Estimulação da Medula Espinal/efeitos adversos , Estimulação da Medula Espinal/métodos , Estudos Retrospectivos , Medicare , Próteses e Implantes , Reoperação , Medula Espinal/cirurgia
17.
Clin Neurol Neurosurg ; 221: 107403, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35933966

RESUMO

BACKGROUND: Neurovascular compression (NVC) has been the primary hypothesis for the underlying mechanism of classical trigeminal neuralgia (TN). However, a substantial body of literature has emerged highlighting notable exceptions to this hypothesis. The purpose of this study is to assess the reliability and diagnostic accuracy of high resolution, high contrast MRI-determined neurovascular contact for TN. METHODS: We performed a retrospective, randomized, and blinded parallel characterization of neurovascular interaction and diagnosis in a population of TN patients and controls using four expert reviewers. Performance statistics were calculated, as well as assessments for generalizability using shuffled bootstraps. RESULTS: Fair to moderate agreement (ICC: 0.32-0.68) about diagnosis between reviewers was observed using MRIs from 47 TN patients and 47 controls. On average reviewers performed no better than chance when diagnosing participants, with an accuracy of 0.57 (95% CI 0.40, 0.59) per patient. CONCLUSION: While MRI is useful in determining structural causes in secondary TN, expert reviewers do no better to only slightly better than chance with distinguishing TN with MRI, despite moderate agreement. Further, the causal role of NVC for TN is not clear, limiting the applicability of MRI to diagnose or prognosticate treatment of TN.


Assuntos
Neuralgia do Trigêmeo , Humanos , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Estudos Retrospectivos , Nervo Trigêmeo/patologia , Neuralgia do Trigêmeo/etiologia
18.
BMJ Open ; 12(7): e059126, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35851008

RESUMO

INTRODUCTION: Spinal cord injury (SCI) leads to significant changes in morbidity, mortality and quality of life (QOL). Currently, there are no effective therapies to restore function after chronic SCI. Preliminary studies have indicated that epidural spinal cord stimulation (eSCS) is a promising therapy to improve motor control and autonomic function for patients with chronic SCI. The aim of this study is to assess the effects of tonic eSCS after chronic SCI on quantitative outcomes of volitional movement and cardiovascular function. Our secondary objective is to optimise spinal cord stimulation parameters for volitional movement. METHODS AND ANALYSIS: The Epidural Stimulation After Neurologic Damage (ESTAND) trial is a phase II single-site self-controlled trial of epidural stimulation with the goal of restoring volitional movement and autonomic function after motor complete SCI. Participants undergo epidural stimulator implantation and are followed up over 15 months while completing at-home, mobile application-based movement testing. The primary outcome measure integrates quantity of volitional movement and similarity to normal controls using the volitional response index (VRI) and the modified Brain Motor Control Assessment. The mobile application is a custom-designed platform to support participant response and a kinematic task to optimise the settings for each participant. The application optimises stimulation settings by evaluating the parameter space using movement data collected from the tablet application and accelerometers. A subgroup of participants with cardiovascular dysautonomia are included for optimisation of blood pressure stabilisation. Indirect effects of stimulation on cardiovascular function, pain, sexual function, bowel/bladder, QOL and psychiatric measures are analysed to assess generalisability of this targeted intervention. ETHICS AND DISSEMINATION: This study has been approved after full review by the Minneapolis Medical Research Foundation Institutional Review Board and by the Minneapolis VA Health Care System. This project has received Food and Drug Administration investigational device exemption approval. Trial results will be disseminated through peer-reviewed publications, conference presentations and seminars. TRIAL REGISTRATION NUMBER: NCT03026816.


Assuntos
Traumatismos da Medula Espinal , Estimulação da Medula Espinal , Ensaios Clínicos Fase II como Assunto , Espaço Epidural , Humanos , Movimento , Qualidade de Vida , Medula Espinal , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/terapia , Estimulação da Medula Espinal/métodos
19.
BMJ Open ; 12(7): e061663, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831043

RESUMO

INTRODUCTION: Cortical spreading depolarisation (CSD) is characterised by a near-complete loss of the ionic membrane potential of cortical neurons and glia propagating across the cerebral cortex, which generates a transient suppression of spontaneous neuronal activity. CSDs have become a recognised phenomenon that imparts ongoing secondary insults after brain injury. Studies delineating CSD generation and propagation in humans after traumatic brain injury (TBI) are lacking. Therefore, this study aims to determine the feasibility of using a multistrip electrode array to identify CSDs and characterise their propagation in space and time after TBI. METHODS AND ANALYSIS: This pilot, prospective observational study will enrol patients with TBI requiring therapeutic craniotomy or craniectomy. Subdural electrodes will be placed for continuous electrocorticography monitoring for seizures and CSDs as a research procedure, with surrogate informed consent obtained preoperatively. The propagation of CSDs relative to structural brain pathology will be mapped using reconstructed CT and electrophysiological cross-correlations. The novel use of multiple subdural strip electrodes in conjunction with brain morphometric segmentation is hypothesised to provide sufficient spatial information to characterise CSD propagation across the cerebral cortex and identify cortical foci giving rise to CSDs. ETHICS AND DISSEMINATION: Ethical approval for the study was obtained from the Hennepin Healthcare Research Institute's ethics committee, HSR 17-4400, 25 October 2017 to present. Study findings will be submitted for publication in peer-reviewed journals and presented at scientific conferences. TRIAL REGISTRATION NUMBER: NCT03321370.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Depressão Alastrante da Atividade Elétrica Cortical , Lesões Encefálicas/cirurgia , Córtex Cerebral , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Humanos , Estudos Observacionais como Assunto , Convulsões
20.
Spinal Cord ; 60(10): 903-910, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35701485

RESUMO

STUDY DESIGN: Cohort prospective study. OBJECTIVES: Epidural spinal cord stimulation (eSCS) improves volitional motor and autonomic function after spinal cord injury (SCI). While eSCS has an established history of safety for chronic pain, it remains unclear if eSCS in the SCI population presents the same risk profile. We aimed to assess safety and autonomic monitoring data for the first 14 participants in the E-STAND trial. SETTING: Hennepin County Medical Center, Minneapolis and Minneapolis Veterans Affairs Medical Center, Minnesota, USA. METHODS: Monthly follow-up visits assessed surgical and medical device-related safety outcomes as well as stimulation usage. Beat-by-beat blood pressure (BP) and continuous electrocardiogram data were collected during head-up tilt-table testing with and without eSCS. RESULTS: All participants had a motor-complete SCI. Mean (SD) age and time since injury were 38 (10) and 7 (5) years, respectively. There were no surgical complications but one device malfunction 4 months post implantation. Stimulation was applied for up to 23 h/day, across a broad range of parameters: frequency (18-700 Hz), pulse width (100-600 µs), and amplitude (0.4-17 mA), with no adverse events reported. Tilt-table testing with eSCS demonstrated no significant increases in the incidence of elevated systolic BP or a greater frequency of arrhythmias. CONCLUSIONS: eSCS to restore autonomic and volitional motor function following SCI has a similar safety profile as when used to treat chronic pain, despite the prevalence of significant comorbidities and the wide variety of stimulation parameters tested.


Assuntos
Doenças Cardiovasculares , Dor Crônica , Traumatismos da Medula Espinal , Estimulação da Medula Espinal , Doenças Cardiovasculares/complicações , Humanos , Incidência , Estudos Prospectivos , Medula Espinal , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/epidemiologia , Traumatismos da Medula Espinal/terapia , Estimulação da Medula Espinal/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA