RESUMO
Point-of-care tests are highly valuable in providing fast results for medical decisions for greater flexibility in patient care. Many diagnostic tests, such as ELISAs, that are commonly used within clinical laboratory settings require trained technicians, laborious workflows, and complex instrumentation hindering their translation into point-of-care applications. Herein, we demonstrate the use of a homogeneous, bioluminescent-based, split reporter platform that enables a simple, sensitive, and rapid method for analyte detection in clinical samples. We developed this point-of-care application using an optimized ternary, split-NanoLuc luciferase reporter system that consists of two small reporter peptides added as appendages to analyte-specific affinity reagents. A bright, stable bioluminescent signal is generated as the affinity reagents bind to the analyte, allowing for proximity-induced complementation between the two reporter peptides and the polypeptide protein, in addition to the furimazine substrate. Through lyophilization of the stabilized reporter system with the formulated substrate, we demonstrate a shelf-stable, all-in-one, add-and-read analyte-detection system for use in complex sample matrices at the point-of-care. We highlight the modularity of this platform using two distinct SARS-CoV-2 model systems: SARS-CoV-2 N-antigen detection for active infections and anti-SARS-CoV-2 antibodies for immunity status detection using chemically conjugated or genetically fused affinity reagents, respectively. This technology provides a simple and standardized method to develop rapid, robust, and sensitive analyte-detection assays with flexible assay formatting making this an ideal platform for research, clinical laboratory, as well as point-of-care applications utilizing a simple handheld luminometer.
RESUMO
Sensitive and selective detection assays are essential for the accurate measurement of analytes in both clinical and research laboratories. Immunoassays that rely on nonoverlapping antibodies directed against the same target analyte (e.g., sandwich enzyme-linked immunosorbent assays (ELISAs)) are commonly used molecular detection technologies. Use of split enzyme reporters has simplified the workflow for these traditionally complex assays. However, identifying functional antibody pairs for a given target analyte can be cumbersome, as it generally involves generating and screening panels of antibodies conjugated to reporters. Accordingly, we sought a faster and easier reporter conjugation strategy to streamline antibody screening. We describe here the development of such a method that is based on an optimized ternary NanoLuc luciferase. This bioluminescence complementation system is comprised of a reagent-based thermally stable polypeptide (LgTrip) and two small peptide tags (ß9 and ß10) with lysine-reactive handles for direct conjugation onto antibodies. These reagents enable fast, single-step, wash-free antibody labeling and sensitive functional screening. Simplicity, speed, and utility of the one-pot labeling technology are demonstrated in screening antibody pairs for the analyte interleukin-4. The screen resulted in the rapid development of a sensitive homogeneous immunoassay for this clinically relevant cytokine.
Assuntos
Anticorpos , Peptídeos , Ensaio de Imunoadsorção Enzimática/métodos , Imunoensaio/métodos , Indicadores e Reagentes , LuciferasesRESUMO
Enzyme-linked immunosorbent assays (ELISAs) are used extensively for the detection and quantification of biomolecules in clinical diagnostics as well as in basic research. Although broadly used, the inherent complexities of ELISAs preclude their utility for straightforward point-of-need testing, where speed and simplicity are essential. With this in mind, we developed a bioluminescence-based immunoassay format that provides a sensitive and simple method for detecting biomolecules in clinical samples. We utilized a ternary, split-NanoLuc luciferase complementation reporter consisting of two small peptides (11mer, 13mer) and a 17 kDa polypeptide combined with a luminogenic substrate to create a complete, shelf-stable add-and-read assay detection reagent. Directed evolution was used to optimize reporter constituent sequences to impart chemical and thermal stability, as well as solubility, while formulation optimization was applied to stabilize an all-in-one reagent that can be reconstituted in aqueous buffers or sample matrices. The result of these efforts is a robust, first-generation bioluminescence-based homogenous immunoassay reporter platform where all assay components can be configured into a stable lyophilized cake, supporting homogeneous, rapid, and sensitive one-step biomolecule quantification in complex human samples. This technology represents a promising alternative immunoassay format with significant potential to bring critical diagnostic molecular detection testing closer to the point-of-need.
Assuntos
Testes Imunológicos , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoensaio , Indicadores e Reagentes , Luciferases/genéticaRESUMO
Protein thermal shift assays (TSAs) provide a means for characterizing target engagement through ligand-induced thermal stabilization. Although these assays are widely utilized for screening libraries and validating hits in drug discovery programs, they can impose encumbering operational requirements, such as the availability of purified proteins or selective antibodies. Appending the target protein with a small luciferase (NanoLuc) allows coupling of thermal denaturation with luminescent output, providing a rapid and sensitive means for assessing target engagement in compositionally complex environments such as permeabilized cells. The intrinsic thermal stability of NanoLuc is greater than mammalian proteins, and our results indicate that the appended luciferase does not alter thermal denaturation of the target protein. We have successfully applied the NanoLuc luciferase thermal shift assay (NaLTSA) to several clinically relevant protein families, including kinases, bromodomains, and histone deacetylases. We have also demonstrated the suitability of this assay method for library screening and compound profiling.
RESUMO
The benefits provided by phenotypic screening of compound libraries are often countered by difficulties in identifying the underlying cellular targets. We recently described a new approach utilizing a chloroalkane capture tag, which can be chemically attached to bioactive compounds to facilitate the isolation of their respective targets for subsequent identification by mass spectrometry. The tag minimally affects compound potency and membrane permeability, enabling target engagement inside cells. Effective enrichment of these targets is achieved through selectivity in both their rapid capture onto immobilized HaloTag and their subsequent release by competitive elution. Here, we describe a significant improvement to this method where selective elution was achieved through palladium-catalyzed cleavage of an allyl-carbamate linkage incorporated into the chloroalkane capture tag. Selective tag cleavage provided robust release of captured targets exhibiting different modes of binding to the bioactive compound, including prolonged residence time and covalent interactions. Using the kinase inhibitors ibrutinib and BIRB796 as model compounds, we demonstrated the capability of this new method to identify both expected targets and "off-targets" exhibiting a range of binding affinities, cellular abundances, and binding characteristics.
Assuntos
Alcanos/química , Paládio/química , Proteínas/química , CatáliseRESUMO
The therapeutic action of drugs is predicated on their physical engagement with cellular targets. Here we describe a broadly applicable method using bioluminescence resonance energy transfer (BRET) to reveal the binding characteristics of a drug with selected targets within intact cells. Cell-permeable fluorescent tracers are used in a competitive binding format to quantify drug engagement with the target proteins fused to Nanoluc luciferase. The approach enabled us to profile isozyme-specific engagement and binding kinetics for a panel of histone deacetylase (HDAC) inhibitors. Our analysis was directed particularly to the clinically approved prodrug FK228 (Istodax/Romidepsin) because of its unique and largely unexplained mechanism of sustained intracellular action. Analysis of the binding kinetics by BRET revealed remarkably long intracellular residence times for FK228 at HDAC1, explaining the protracted intracellular behaviour of this prodrug. Our results demonstrate a novel application of BRET for assessing target engagement within the complex milieu of the intracellular environment.
Assuntos
Células/efeitos dos fármacos , Transferência Ressonante de Energia de Fluorescência/métodos , Inibidores de Histona Desacetilases/química , Preparações Farmacêuticas/química , Proliferação de Células , Células/química , Células/citologia , Células HeLa , Histona Desacetilase 1/química , Histona Desacetilase 1/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Humanos , Luciferases/química , Luciferases/genética , Luciferases/metabolismo , LuminescênciaRESUMO
RATIONALE: Considerable evidence shows atherosclerosis to be a chronic inflammatory disease in which immunity to self-antigens contributes to disease progression. We recently identified the collagen type V [col(V)] α1(V) chain as a key autoantigen driving the Th17-dependent cellular immunity underlying another chronic inflammatory disease, obliterative bronchiolitis. Because specific induction of α1(V) chains has previously been reported in human atheromas, we postulated involvement of col(V) autoimmunity in atherosclerosis. OBJECTIVE: To determine whether col(V) autoimmunity may be involved in the pathogenesis of atherosclerosis. METHODS AND RESULTS: Here, we demonstrate Th17-dependent anti-col(V) immunity to be characteristic of atherosclerosis in human coronary artery disease (CAD) patients and in apolipoprotein E-null (ApoE(-/-)) atherosclerotic mice. Responses were α1(V)-specific in CAD with variable Th1 pathway involvement. In early atherosclerosis in ApoE(-/-) mice, anti-col(V) immunity was tempered by an interleukin (IL)-10-dependent mechanism. In support of a causal role for col(V) autoimmunity in the pathogenesis of atherosclerosis, col(V) sensitization of ApoE(-/-) mice on a regular chow diet overcame IL-10-mediated inhibition of col(V) autoimmunity, leading to increased atherosclerotic burden in these mice and local accumulation of IL-17-producing cells, particularly in the col(V)-rich adventitia subjacent to the atheromas. CONCLUSIONS: These findings establish col(V) as an autoantigen in human CAD and show col(V) autoimmunity to be a consistent feature in atherosclerosis in humans and mice. Furthermore, data are consistent with a causative role for col(V) in the pathogenesis of atherosclerosis.
Assuntos
Aterosclerose/imunologia , Doenças Autoimunes/imunologia , Colágeno Tipo V/fisiologia , Interleucina-17/fisiologia , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/patologia , Doenças Autoimunes/genética , Doenças Autoimunes/patologia , Bovinos , Colágeno Tipo V/efeitos adversos , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos SCID , Células Th1/imunologia , Células Th1/metabolismo , Células Th1/patologiaRESUMO
We evaluated the immunocompetence of human T cells in humanized NOD-SCID interleukin (IL)-2r-gamma-null (hu-NSG) mice bearing a human thymic organoid, after multilineage reconstitution with isogeneic human leukocytes. Delayed type hypersensitivity (DTH) response was assessed by a direct footpad challenge of the immunized hu-NSG host, or by transfer of splenocytes from immunized hu-NSG, along with antigen, into footpads of C.B-17 scid mice (trans vivo [tv] DTH). Both methods revealed cellular immunity to tetanus toxoid (TT) or collagen type V (ColV). Immunohistochemical analysis of the swollen footpads revealed infiltration of human CD45(+) cells, including CD3(+) T cells, CD68(+) macrophages, and murine Ly6G(+) neutrophils. We observed a significant correlation between the percentage of circulating human CD4(+) cells and the direct DTH swelling response to TT. The tvDTH response to TT was inhibited by anti-interferon-gamma, whereas the tvDTH response to collagen V was inhibited by anti-IL-17 antibody, mimicking the cytokine bias of adult human T cells to these antigens. hu-NSG mice were also capable of mounting a B-cell response (primarily IgM) to TT antigen. The activation of either Th1- or Th17-dependent cellular immune response supports the utility of hu-NSG mice as a surrogate model of allograft rejection and autoimmunity.
Assuntos
Hipersensibilidade Tardia/imunologia , Interleucina-17/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , Receptores de Interleucina-2 , Células Th1/metabolismo , Animais , Anticorpos Monoclonais/administração & dosagem , Antígenos CD/biossíntese , Células Cultivadas , Colágeno Tipo V/imunologia , Colágeno Tipo V/metabolismo , Modelos Animais de Doenças , Embrião de Mamíferos , Estudos de Viabilidade , Humanos , Imunocompetência/efeitos dos fármacos , Interferon gama/imunologia , Interferon gama/metabolismo , Interleucina-17/imunologia , Camundongos , Neutrófilos/imunologia , Receptores de Interleucina-2/genética , Toxoide Tetânico/imunologia , Toxoide Tetânico/metabolismo , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th1/patologiaRESUMO
We previously showed that fetal and maternal exposure to non-inherited maternal antigens (NIMA) during gestation and nursing resulted in lifelong tolerance to NIMA in some offspring. This NIMA-specific tolerance was mediated by regulatory T cells (Tregs) and was correlated with the level of multi-lineage maternal microchimerism (Mc) indicating a causative link between Mc and Treg development. To determine if transfer of fetal cells into mothers resulted in a similar tolerance to fetal cells, we used qPCR to detect rare fetal derived cells and a delayed type hypersensitivity (DTH) assay to detect fetal alloantigen-specific effector and regulatory T cells in mothers. We found that 5/8 B6 mothers of H2(b/d) offspring were sensitized to the alloantigens H2(d) and HY, indicating a dominance of alloantigen-specific effector T cells. Though these sensitized mothers did not have detectable fetal Mc (FMc) in any of the organs tested, they had very high levels of fetus-derived c-kit(+) stem cells in their bone marrow. The remaining 3/8 B6 mothers that were not sensitized to the fetal antigens had detectable FMc found mostly in heart, lungs and liver, and in 2/3, we could detect alloantigen-specific regulatory T cells. This data indicates that, as in NIMA-specific tolerance, tolerance in multiparous females to inherited paternal antigens (IPA) expressed by the fetus is associated with the presence of fetal Mc in differentiated cell subsets. Surprisingly, robust lin(-)c-kit(+) bone marrow cell fetal Mc can occur in sensitized mothers. This suggests a continuous source of allospecific priming, coupled with active elimination of mature IPA-expressing lin(+) cells by effector T cells of the maternal host.
RESUMO
We hypothesize that developmental exposure to noninherited maternal Ags (NIMA) results in alloantigen-specific natural and adaptive T regulatory (T(R)) cells. We compared offspring exposed to maternal H-2(d) (NIMA(d)) with nonexposed controls. In vitro assays did not reveal any differences in T cell responses pretransplant. Adoptive transfer assays revealed lower lymphoproliferation and greater cell surface TGF-beta expression on CD4(+) T cells of NIMA(d)-exposed vs control splenocytes. NIMA(d)-exposed splenocytes exhibited bystander suppression of tetanus-specific delayed-type hypersensitivity responses, which was reversed with Abs to TGF-beta and IL-10. Allospecific T effector cells were induced in all mice upon i.v. challenge with B6D2F1 splenocytes or a DBA/2 heart transplant, but were controlled in NIMA(d)-exposed mice by T(R) cells to varying degrees. Some (40%) NIMA(d)-exposed mice accepted a DBA/2 allograft while others (60%) rejected in delayed fashion. Rejector and acceptor NIMA(d)-exposed mice had reduced T effector responses and increased Foxp3(+) T(R) cells (CD4(+)CD25(+)Foxp3(+) T(R)) in spleen and lymph nodes compared with controls. The key features distinguishing NIMA(d)-exposed acceptors from all other mice were: 1) higher frequency of IL-10- and TGF-beta-producing cells primarily in the CD4(+)CD25(+) T cell subset within lymph nodes and allografts, 2) a suppressed delayed-type hypersensitivity response to B6D2F1 Ags, and 3) allografts enriched in LAP(+), Foxp3(+), and CD4(+) T cells, with few CD8(+) T cells. We conclude that the beneficial NIMA effect is due to induction of NIMA-specific T(R) cells during ontogeny. Their persistence in the adult, and the ability of the host to mobilize them to the graft, may determine whether NIMA-specific tolerance is achieved.