Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Nat Microbiol ; 7(1): 87-96, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34969979

RESUMO

Although the composition and functional potential of the human gut microbiota evolve over the lifespan, kinship has been identified as a key covariate of microbial community diversification. However, to date, sharing of microbiota features within families has mostly been assessed between parents and their direct offspring. Here we investigate the potential transmission and persistence of familial microbiome patterns and microbial genotypes in a family cohort (n = 102) spanning 3 to 5 generations over the same female bloodline. We observe microbiome community composition associated with kinship, with seven low abundant genera displaying familial distribution patterns. While kinship and current cohabitation emerge as closely entangled variables, our explorative analyses of microbial genotype distribution and transmission estimates point at the latter as a key covariate of strain dissemination. Highest potential transmission rates are estimated between sisters and mother-daughter pairs, decreasing with increasing daughter's age and being higher among cohabiting pairs than those living apart. Although rare, we detect potential transmission events spanning three and four generations, primarily involving species of the genera Alistipes and Bacteroides. Overall, while our analyses confirm the existence of family-bound microbiome community profiles, transmission or co-acquisition of bacterial strains appears to be strongly linked to cohabitation.


Assuntos
Bactérias/genética , Família , Microbioma Gastrointestinal/genética , Metagenoma , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Bactérias/classificação , Fenômenos Fisiológicos Bacterianos/genética , Criança , Pré-Escolar , Estudos de Coortes , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/fisiologia , Humanos , Metagenômica/métodos , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Adulto Jovem
2.
Bioinformatics ; 35(21): 4519-4521, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31004476

RESUMO

SUMMARY: Functional annotations and their hierarchical classification are widely used in omics workflows to build novel insight upon existing biological knowledge. Currently, a plethora of tools is available to explore omics datasets at the level of functional annotations, but there is a lack of feature rich and user-friendly tools that help scientists take advantage of their hierarchical classification for additional and often invaluable insights. Here, we present FuncTree2, a user-friendly web application that turns hierarchical classifications into interactive and highly customizable radial trees, and enables researchers to visualize their data simultaneously on all its levels. FuncTree2 features mapping of data from multiple samples and several navigation features like zooming, panning, re-rooting and collapsing of nodes or levels. AVAILABILITY AND IMPLEMENTATION: FuncTree2 is freely available at https://bioviz.tokyo/functree2/ as a web application and a REST API. Source code is available on GitHub https://github.com/yamada-lab/functree-ng. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Visualização de Dados , Criança , Ontologia Genética , Humanos , Software
3.
Nat Microbiol ; 4(4): 623-632, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718848

RESUMO

The relationship between gut microbial metabolism and mental health is one of the most intriguing and controversial topics in microbiome research. Bidirectional microbiota-gut-brain communication has mostly been explored in animal models, with human research lagging behind. Large-scale metagenomics studies could facilitate the translational process, but their interpretation is hampered by a lack of dedicated reference databases and tools to study the microbial neuroactive potential. Surveying a large microbiome population cohort (Flemish Gut Flora Project, n = 1,054) with validation in independent data sets (ntotal = 1,070), we studied how microbiome features correlate with host quality of life and depression. Butyrate-producing Faecalibacterium and Coprococcus bacteria were consistently associated with higher quality of life indicators. Together with Dialister, Coprococcus spp. were also depleted in depression, even after correcting for the confounding effects of antidepressants. Using a module-based analytical framework, we assembled a catalogue of neuroactive potential of sequenced gut prokaryotes. Gut-brain module analysis of faecal metagenomes identified the microbial synthesis potential of the dopamine metabolite 3,4-dihydroxyphenylacetic acid as correlating positively with mental quality of life and indicated a potential role of microbial γ-aminobutyric acid production in depression. Our results provide population-scale evidence for microbiome links to mental health, while emphasizing confounder importance.


Assuntos
Bactérias/isolamento & purificação , Depressão/microbiologia , Microbioma Gastrointestinal , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Adulto , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Estudos de Coortes , Depressão/metabolismo , Depressão/psicologia , Dopamina/metabolismo , Fezes/microbiologia , Feminino , Humanos , Intestinos/microbiologia , Masculino , Pessoa de Meia-Idade , Qualidade de Vida
4.
Gut ; 68(7): 1180-1189, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30171064

RESUMO

OBJECTIVE: Human gut microbiome studies are mainly bacteria- and archaea-oriented, overlooking the presence of single-cell eukaryotes such as Blastocystis, an enteric stramenopiles with worldwide distribution. Here, we surveyed the prevalence and subtype variation of Blastocystis in faecal samples collected as part of the Flemish Gut Flora Project (FGFP), a Western population cohort. We assessed potential links between Blastocystis subtypes and identified microbiota-host covariates and quantified microbiota differentiation relative to subtype abundances. DESIGN: We profiled stool samples from 616 healthy individuals from the FGFP cohort as well as 107 patients with IBD using amplicon sequencing targeting the V4 variable region of the 16S rRNA and 18S rRNA genes. We evaluated associations of Blastocystis, and their subtypes, with host parameters, diversity and composition of bacterial and archaeal communities. RESULTS: Blastocystis prevalence in the non-clinical population cohort was 30% compared with 4% among Flemish patients with IBD. Within the FGFP cohort, out of 69 previously identified gut microbiota covariates, only age was associated with Blastocystis subtype carrier status. In contrast, a strong association between microbiota community composition and Blastocystis subtypes was observed, with effect sizes larger than that of host covariates. Microbial richness and diversity were linked to both Blastocystis prevalence and subtype variation. All Blastocystis subtypes detected in this cohort were found to be less prevalent in Bacteroides enterotyped samples. Interestingly, Blastocystis subtypes 3 and 4 were inversely correlated with Akkermansia, suggesting differential associations of subtypes with host health. CONCLUSIONS: These results emphasise the role of Blastocystis as a common constituent of the healthy gut microbiota. We show its prevalence is reduced in patients with active IBD and demonstrate that subtype characterisation is essential for assessing the relationship between Blastocystis, microbiota profile and host health. These findings have direct clinical applications, especially in donor selection for faecal transplantation.


Assuntos
Blastocystis/isolamento & purificação , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais/microbiologia , Adulto , Idoso , Bélgica , Estudos de Casos e Controles , Estudos de Coortes , Fezes/microbiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência
5.
Nucleic Acids Res ; 46(W1): W510-W513, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29718427

RESUMO

iPath3.0 (http://pathways.embl.de) is a web-application for the visualization and analysis of cellular pathways. It is freely available and open to everyone. Currently it is based on four KEGG global maps, which summarize up to 158 traditional KEGG pathway maps, 192 KEGG modules and other metabolic elements into one connected and manually curated metabolic network. Users can fully customize these networks and interactively explore them through its redesigned, fast and lightweight interface, which highlights general metabolic trends in multi-omics data. It also offers navigation at various levels of details to help users further investigate those trends and ultimately uncover novel biological insights. Support for multiple experimental conditions and time-series datasets, tools for generation of customization data, programmatic access, and a free user accounts system were introduced in this version to further streamline its workflow.


Assuntos
Proteínas de Bactérias/genética , Escherichia coli K12/metabolismo , Escherichia coli O157/metabolismo , Regulação Bacteriana da Expressão Gênica , Redes e Vias Metabólicas/genética , Interface Usuário-Computador , Proteínas de Bactérias/metabolismo , Gráficos por Computador , Escherichia coli K12/genética , Escherichia coli O157/genética , Genômica/métodos , Humanos , Internet , Metabolômica/métodos , Anotação de Sequência Molecular , Proteômica/métodos
6.
Nature ; 551(7681): 507-511, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29143816

RESUMO

Current sequencing-based analyses of faecal microbiota quantify microbial taxa and metabolic pathways as fractions of the sample sequence library generated by each analysis. Although these relative approaches permit detection of disease-associated microbiome variation, they are limited in their ability to reveal the interplay between microbiota and host health. Comparative analyses of relative microbiome data cannot provide information about the extent or directionality of changes in taxa abundance or metabolic potential. If microbial load varies substantially between samples, relative profiling will hamper attempts to link microbiome features to quantitative data such as physiological parameters or metabolite concentrations. Saliently, relative approaches ignore the possibility that altered overall microbiota abundance itself could be a key identifier of a disease-associated ecosystem configuration. To enable genuine characterization of host-microbiota interactions, microbiome research must exchange ratios for counts. Here we build a workflow for the quantitative microbiome profiling of faecal material, through parallelization of amplicon sequencing and flow cytometric enumeration of microbial cells. We observe up to tenfold differences in the microbial loads of healthy individuals and relate this variation to enterotype differentiation. We show how microbial abundances underpin both microbiota variation between individuals and covariation with host phenotype. Quantitative profiling bypasses compositionality effects in the reconstruction of gut microbiota interaction networks and reveals that the taxonomic trade-off between Bacteroides and Prevotella is an artefact of relative microbiome analyses. Finally, we identify microbial load as a key driver of observed microbiota alterations in a cohort of patients with Crohn's disease, here associated with a low-cell-count Bacteroides enterotype (as defined through relative profiling).


Assuntos
Carga Bacteriana , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Microbiota/genética , Fatores Etários , Envelhecimento , Estudos de Coortes , Contagem de Colônia Microbiana , Doença de Crohn/microbiologia , Citometria de Fluxo , Voluntários Saudáveis , Humanos , Análise de Sequência de DNA
7.
Nat Microbiol ; 1(8): 16088, 2016 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-27573110

RESUMO

Despite recent progress, the organization and ecological properties of the intestinal microbial ecosystem remain under-investigated. Here, using a manually curated metabolic module framework for (meta-)genomic data analysis, we studied species-function relationships in gut microbial genomes and microbiomes. Half of gut-associated species were found to be generalists regarding overall substrate preference, but we observed significant genus-level metabolic diversification linked to bacterial life strategies. Within each genus, metabolic consistency varied significantly, being low in Firmicutes genera and higher in Bacteroides. Differentiation of fermentable substrate degradation potential contributed to metagenomic functional repertoire variation between individuals, with different enterotypes showing distinct saccharolytic/proteolytic/lipolytic profiles. Finally, we found that module-derived functional redundancy was reduced in the low-richness Bacteroides enterotype, potentially indicating a decreased resilience to perturbation, in line with its frequent association to dysbiosis. These results provide insights into the complex structure of gut microbiome-encoded metabolic properties and emphasize the importance of functional and ecological assessment of gut microbiome variation in clinical studies.


Assuntos
Ecossistema , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Redes e Vias Metabólicas/genética , Microbiota , Humanos , Metagenômica
8.
PLoS One ; 11(7): e0158866, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27409077

RESUMO

Strain NI1060 is an oral bacterium responsible for periodontitis in a murine ligature-induced disease model. To better understand its pathogenicity, we have determined the complete sequence of its 2,553,982 bp genome. Although closely related to Pasteurella pneumotropica, a pneumonia-associated rodent commensal based on its 16S rRNA, the NI1060 genomic content suggests that they are different species thriving on different energy sources via alternative metabolic pathways. Genomic and phylogenetic analyses showed that strain NI1060 is distinct from the genera currently described in the family Pasteurellaceae, and is likely to represent a novel species. In addition, we found putative virulence genes involved in lipooligosaccharide synthesis, adhesins and bacteriotoxic proteins. These genes are potentially important for host adaption and for the induction of dysbiosis through bacterial competition and pathogenicity. Importantly, strain NI1060 strongly stimulates Nod1, an innate immune receptor, but is defective in two peptidoglycan recycling genes due to a frameshift mutation. The in-depth analysis of its genome thus provides critical insights for the development of NI1060 as a prime model system for infectious disease.


Assuntos
DNA Bacteriano/genética , Genoma Bacteriano/genética , Pasteurellaceae/classificação , Pasteurellaceae/genética , Periodontite/microbiologia , Sequência de Bases , Lipopolissacarídeos/química , Pasteurellaceae/patogenicidade , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Fatores de Virulência
9.
Science ; 352(6285): 560-4, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-27126039

RESUMO

Fecal microbiome variation in the average, healthy population has remained under-investigated. Here, we analyzed two independent, extensively phenotyped cohorts: the Belgian Flemish Gut Flora Project (FGFP; discovery cohort; N = 1106) and the Dutch LifeLines-DEEP study (LLDeep; replication; N = 1135). Integration with global data sets (N combined = 3948) revealed a 14-genera core microbiota, but the 664 identified genera still underexplore total gut diversity. Sixty-nine clinical and questionnaire-based covariates were found associated to microbiota compositional variation with a 92% replication rate. Stool consistency showed the largest effect size, whereas medication explained largest total variance and interacted with other covariate-microbiota associations. Early-life events such as birth mode were not reflected in adult microbiota composition. Finally, we found that proposed disease marker genera associated to host covariates, urging inclusion of the latter in study design.


Assuntos
Bactérias/classificação , Microbioma Gastrointestinal , Bactérias/genética , Bactérias/isolamento & purificação , Bélgica , Estudos de Coortes , Interações Medicamentosas , Fezes/microbiologia , Humanos
10.
Nature ; 532(7600): 465-470, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-26863193

RESUMO

The biological carbon pump is the process by which CO2 is transformed to organic carbon via photosynthesis, exported through sinking particles, and finally sequestered in the deep ocean. While the intensity of the pump correlates with plankton community composition, the underlying ecosystem structure driving the process remains largely uncharacterized. Here we use environmental and metagenomic data gathered during the Tara Oceans expedition to improve our understanding of carbon export in the oligotrophic ocean. We show that specific plankton communities, from the surface and deep chlorophyll maximum, correlate with carbon export at 150 m and highlight unexpected taxa such as Radiolaria and alveolate parasites, as well as Synechococcus and their phages, as lineages most strongly associated with carbon export in the subtropical, nutrient-depleted, oligotrophic ocean. Additionally, we show that the relative abundance of a few bacterial and viral genes can predict a significant fraction of the variability in carbon export in these regions.


Assuntos
Organismos Aquáticos/metabolismo , Carbono/metabolismo , Ecossistema , Plâncton/metabolismo , Água do Mar/química , Organismos Aquáticos/genética , Organismos Aquáticos/isolamento & purificação , Clorofila/metabolismo , Dinoflagellida/genética , Dinoflagellida/isolamento & purificação , Dinoflagellida/metabolismo , Expedições , Genes Bacterianos , Genes Virais , Geografia , Oceanos e Mares , Fotossíntese , Plâncton/genética , Plâncton/isolamento & purificação , Água do Mar/microbiologia , Água do Mar/parasitologia , Synechococcus/genética , Synechococcus/isolamento & purificação , Synechococcus/metabolismo , Synechococcus/virologia
11.
J Crohns Colitis ; 10(6): 735-46, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26802086

RESUMO

Meta-omics [metagenomics, metatranscriptomics, and metaproteomics] are rapidly expanding our knowledge of the gut microbiota in health and disease. These technologies are increasingly used in inflammatory bowel disease [IBD] research. Yet, meta-omics data analysis, interpretation, and among-study comparison remain challenging. In this review we discuss the role these techniques are playing in IBD research, highlighting their strengths and limitations. We give guidelines on proper sample collection and preparation methods, and on performing the analyses and interpreting the results, reporting available user-friendly tools and pipelines.


Assuntos
Microbioma Gastrointestinal/genética , Doenças Inflamatórias Intestinais/microbiologia , Metagenômica , Proteômica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Bacteriano/análise , Genoma , Humanos , Proteoma , RNA Bacteriano/análise , Análise de Sequência de DNA , Análise de Sequência de RNA , Transcriptoma
12.
ISME J ; 10(5): 1025-8, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26623543
13.
Science ; 348(6237): 1262073, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25999517

RESUMO

Species interaction networks are shaped by abiotic and biotic factors. Here, as part of the Tara Oceans project, we studied the photic zone interactome using environmental factors and organismal abundance profiles and found that environmental factors are incomplete predictors of community structure. We found associations across plankton functional types and phylogenetic groups to be nonrandomly distributed on the network and driven by both local and global patterns. We identified interactions among grazers, primary producers, viruses, and (mainly parasitic) symbionts and validated network-generated hypotheses using microscopy to confirm symbiotic relationships. We have thus provided a resource to support further research on ocean food webs and integrating biological components into ocean models.


Assuntos
Cadeia Alimentar , Plâncton/classificação , Plâncton/fisiologia , Simbiose , Animais , Especificidade de Hospedeiro , Oceanos e Mares , Filogenia , Platelmintos/classificação , Platelmintos/fisiologia , Luz Solar , Vírus/classificação
14.
Cell Host Microbe ; 13(5): 595-601, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23684310

RESUMO

Periodontitis is a common disease that is characterized by resorption of the alveolar bone and mediated by commensal bacteria that trigger host immune responses and bone destruction through unidentified mechanisms. We report that Nod1, an innate intracellular host receptor for bacterial peptidoglycan-related molecules, is critical for commensal-induced periodontitis in a mouse model. Mice lacking Nod1 exhibit reduced bone resorption as well as impaired recruitment of neutrophils to gingival tissues and osteoclasts to the alveolar bone, which mediate tissue and bone destruction. Further analysis showed that accumulation of a Nod1-stimulating commensal bacterium, NI1060, at gingival sites was sufficient to induce neutrophil recruitment and bone resorption. Genomic sequencing revealed that NI1060 is a mouse-specific bacterium that is related to bacteria associated with the development of aggressive periodontitis in humans. These findings provide insight into commensal-host interactions contributing to periodontitis and identify a potential target for preventing this common oral disease.


Assuntos
Perda do Osso Alveolar/patologia , Bactérias/patogenicidade , Interações Hospedeiro-Patógeno , Boca/microbiologia , Proteína Adaptadora de Sinalização NOD1/metabolismo , Periodontite/patologia , Transdução de Sinais , Animais , Camundongos , Periodontite/complicações
15.
PLoS One ; 7(11): e49138, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23209564

RESUMO

Crohn's disease (CD) is an inflammatory bowel disease of complex etiology, although dysbiosis of the gut microbiota has been implicated in chronic immune-mediated inflammation associated with CD. Here we combined shotgun metagenomic and metaproteomic approaches to identify potential functional signatures of CD in stool samples from six twin pairs that were either healthy, or that had CD in the ileum (ICD) or colon (CCD). Integration of these omics approaches revealed several genes, proteins, and pathways that primarily differentiated ICD from healthy subjects, including depletion of many proteins in ICD. In addition, the ICD phenotype was associated with alterations in bacterial carbohydrate metabolism, bacterial-host interactions, as well as human host-secreted enzymes. This eco-systems biology approach underscores the link between the gut microbiota and functional alterations in the pathophysiology of Crohn's disease and aids in identification of novel diagnostic targets and disease specific biomarkers.


Assuntos
Doença de Crohn/metabolismo , Doença de Crohn/microbiologia , Metagenoma , Metagenômica , Proteômica , Bactérias/genética , Bactérias/metabolismo , Análise por Conglomerados , Feminino , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Humanos , Íleo/metabolismo , Íleo/microbiologia , Íleo/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Masculino , Redes e Vias Metabólicas , Proteoma , Gêmeos Monozigóticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA