Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 235
Filtrar
1.
Cell Mol Life Sci ; 81(1): 172, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597972

RESUMO

Skin regeneration is severely compromised in diabetic foot ulcers. Allogeneic mesenchymal stem cell (MSC) transplantation is limited due to the poor engraftment, mitogenic, and differentiation potential in the harsh wound microenvironment. Thus, to improve the efficacy of cell therapy, the chemokine receptor Cxcr2 was overexpressed in MSCs (MSCCxcr2). CXCL2/CXCR2 axis induction led to the enhanced proliferation of MSCs through the activation of STAT3 and ERK1/2 signaling. Transcriptional upregulation of FGFR2IIIb (KGF Receptor) promoter by the activated STAT3 and ERK1/2 suggested trans-differentiation of MSCs into keratinocytes. These stable MSCCxcr2 in 2D and 3D (spheroid) cell cultures efficiently transdifferentiated into keratinocyte-like cells (KLCs). An in vivo therapeutic potential of MSCCxcr2 transplantation and its keratinocyte-specific cell fate was observed by accelerated skin tissue regeneration in an excisional splinting wound healing murine model of streptozotocin-induced type 1 diabetes. Finally, 3D skin organoids generated using MSCCxcr2-derived KLCs upon grafting in a relatively avascular and non-healing wounds of type 2 diabetic db/db transgenic old mice resulted in a significant enhancement in the rate of wound closure by increased epithelialization (epidermal layer) and endothelialization (dermal layer). Our findings emphasize the therapeutic role of the CXCL2/CXCR2 axis in inducing trans-differentiation of the MSCs toward KLCs through the activation of ERK1/2 and STAT3 signaling and enhanced skin regeneration potential of 3D organoids grafting in chronic diabetic wounds.


Assuntos
Diabetes Mellitus Tipo 1 , Sistema de Sinalização das MAP Quinases , Animais , Camundongos , Pele , Queratinócitos , Epiderme
2.
Langmuir ; 40(17): 8820-8826, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38619546

RESUMO

Hollow porous organic capsules (HPOCs) with an entrapped active catalyst have nanosized cavities, providing the benefits of a nanoreactor, as well as separation of the catalysts from the reaction medium via pores acting as a size-exclusion gate. Such purpose-built HPOCs with desired molecular weight cutoffs offer the advantages of semipermeable membrane separation and a sustainable chemical process that excludes energy-extensive separation. Here, we report a newly synthesized HPOC with an entrapped Pd(PPh3)2Cl2 as the catalyst for demonstrating a Suzuki-Miyaura coupling reaction as a proof of concept.

3.
Surgery ; 175(6): 1539-1546, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38508920

RESUMO

BACKGROUND: Ischemia-reperfusion injury is a common problem in liver surgery and transplantation. Although ischemia-reperfusion injury is known to be more pronounced in fatty livers, the underlying mechanisms for this difference remain poorly understood. We hypothesized that ferroptosis plays a significant role in fatty liver ischemia-reperfusion injury due to increased lipid peroxidation in the presence of stored iron in the fatty liver. To test this hypothesis, the ferroptosis pathway was evaluated in a murine fatty liver ischemia-reperfusion injury model. METHODS: C57BL6 mice were fed with a normal diet or a high fat, high sucrose diet for 12 weeks. At 22 weeks of age, liver ischemia-reperfusion injury was induced through partial (70%) hepatic pedicle clamping for 60 minutes, followed by 24 hours of reperfusion before tissue harvest. Acyl-coenzyme A synthetase long-chain family member 4 and 4-hydroxynonenal were quantified in the liver tissues. In separate experiments, liproxstatin-1 or vehicle control was administered for 7 consecutive days before liver ischemia-reperfusion injury. RESULTS: Exacerbated ischemia-reperfusion injury was observed in the livers of high fat, high sucrose diet fed mice. High fat, high sucrose diet + ischemia-reperfusion injury (HDF+IRI) livers had a significantly greater abundance of acyl-coenzyme A synthetase long-chain family member 4 and 4-hydroxynonenal compared with normal diet + ischemia-reperfusion injury (ND+IRI) livers or sham fatty livers, which indicated an increase of ferroptosis. HFD fed animals receiving liproxstatin-1 injections had a significant reduction in serum aspartate transaminase and alanine transaminase after ischemia-reperfusion injury, consistent with attenuation of ischemia-reperfusion injury in the liver. CONCLUSION: Ferroptosis plays a significant role in ischemia-reperfusion injury in fatty livers. Inhibiting ferroptotic pathways in the liver may serve as a novel therapeutic strategy to protect the fatty liver in the setting of ischemia-reperfusion injury.


Assuntos
Ferroptose , Peroxidação de Lipídeos , Fígado , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão , Animais , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/patologia , Camundongos , Masculino , Fígado/metabolismo , Fígado/irrigação sanguínea , Fígado/patologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/etiologia , Fígado Gorduroso/patologia , Modelos Animais de Doenças , Aldeídos/metabolismo , Coenzima A Ligases/metabolismo , Dieta Hiperlipídica/efeitos adversos , Quinoxalinas , Compostos de Espiro
4.
Cancer Rep (Hoboken) ; 7(3): e2049, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38522013

RESUMO

BACKGROUND: Metastasis has been a cause of the poor prognosis and cancer relapse of triple-negative breast cancer (TNBC) patients. The metastatic nature of TNBC is contributed by the breast cancer stem cells (CSCs) which have been implicated in tumorigenesis. Higher expression of epidermal growth factor receptor (EGFR) in breast CSCs has been used as a molecular target for breast cancer therapeutics. Thus, it necessitates the design and generation of efficacious EGFR inhibitors to target the downstream signaling associated with the cellular proliferation and tumorigenesis of breast cancer. AIM: To generate efficacious EGFR inhibitors that can potentiate the chemotherapeutic-mediated mitigation of breast cancer tumorigenesis. METHODS AND RESULTS: We identified small molecule EGFR inhibitors using molecular docking studies. In-vitro screening of the compounds was undertaken to identify the cytotoxicity profile of the small-molecule EGFR inhibitors followed by evaluation of the non-cytotoxic compounds in modulating the doxorubicin-induced migration, in-vitro tumorigenesis potential, and their effect on the pro-apoptotic genes' and protein markers' expression in TNBC cells. Compound 1e potentiated the doxorubicin-mediated inhibitory effect on proliferation, migration, in-vitro tumorigenesis capacity, and induction of apoptosis in MDA-MB-231 cells, and in the sorted CD24+-breast cancer cells and CD24-/CD44+-breast CSC populations. Orthotopic xenotransplantation of the breast CSCs-induced tumors in C57BL/6J mice was significantly inhibited by the low dose of Doxorubicin in the presence of compound 1e as depicted by molecular and immunohistochemical analysis. CONCLUSION: Thus, the study suggests that EGFR inhibition-mediated sensitization of the aggressive and metastatic breast CSCs in TNBCs toward chemotherapeutics may reduce the relapse of the disease.


Assuntos
Receptores ErbB , Neoplasias de Mama Triplo Negativas , Animais , Humanos , Camundongos , Carcinogênese , Transformação Celular Neoplásica , Doxorrubicina/farmacologia , Receptores ErbB/antagonistas & inibidores , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Recidiva Local de Neoplasia , Células-Tronco Neoplásicas , Recidiva , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
5.
Sci Rep ; 14(1): 3257, 2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331988

RESUMO

Macrophages assume diverse phenotypes and functions in response to cues from the microenvironment. Earlier we reported an anti-inflammatory effect of Collagenase Santyl® Ointment (CSO) and the active constituent of CSO (CS-API) on wound macrophages in resolving wound inflammation indicating roles beyond debridement in wound healing. Building upon our prior finding, this study aimed to understand the phenotypes and subsets of macrophages following treatment with CS-API. scRNA-sequencing was performed on human blood monocyte-derived macrophages (MDM) following treatment with CS-API for 24 h. Unbiased data analysis resulted in the identification of discrete macrophage subsets based on their gene expression profiles. Following CS-API treatment, clusters 3 and 4 displayed enrichment of macrophages with high expression of genes supporting extracellular matrix (ECM) function. IPA analysis identified the TGFß-1 pathway as a key hub for the CS-API-mediated ECM-supportive phenotype of macrophages. Earlier we reported the physiological conversion of wound-site macrophages to fibroblasts in granulation tissue and impairment of such response in diabetic wounds, leading to compromised ECM and tensile strength. The findings that CSO can augment the physiological conversion of macrophages to fibroblast-like cells carry significant clinical implications. This existing clinical intervention, already employed for wound care, can be readily repurposed to improve the ECM response in chronic wounds.


Assuntos
Colagenases , Macrófagos , Humanos , Desbridamento , Colagenases/metabolismo , Macrófagos/metabolismo , Matriz Extracelular/metabolismo , Fenótipo
6.
Cell Signal ; 118: 111120, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38417636

RESUMO

Vestigial-like family member 1 (VGLL1) is one of the X-linked genes whose expression is elevated in basal-like breast cancer (BLBC) because of X-chromosome isodisomy. As an approach towards understanding its function, we performed correlation study using transcript data of breast cancer patients from cBioPortal for Cancer Genomics. Our analysis identified EGFR as the most correlated transcript with VGLL1. We demonstrate that VGLL1 promotes EGFR expression and increases the frequency of breast tumor initiating cells (CD44high/+CD24low/-). These findings are crucial because an elevated EGFR expression and high frequency of CD44high/+CD24low/- cells are defining features of BLBC, and we provide a new mechanistic insight into how their expressions are controlled. Importantly, VGLL1 regulation of EGFR and CD44high/+CD24low/- population is mediated by the hippo-transducer TAZ which exerts its oncogenic roles by binding and activating TEAD transcription factors. A crucial finding is that TEAD-binding domain of TAZ is dispensable for its regulation of EGFR and CD44high/+CD24low/- cells. Instead, VGLL1 stabilization of cytoplasmic TAZ is essential for these functions. Also, we show that VGLL1/TAZ restricts the surface expression of CD24 which contributes to the increased number of CD44high/+CD24low/- cells. In addition, we observed that VGLL1 represses AXL expression and suppresses claudin-low phenotype, and that is caused by the VGLL1 mediated nuclear expulsion of TAZ. Therefore, EGFR and AXL seem to represent two different breast tumor subtypes, and their differential expressions is controlled by VGLL1.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/patologia , Antígeno CD24/metabolismo , Citoplasma/metabolismo , Proteínas de Ligação a DNA/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Receptores de Hialuronatos/metabolismo , Células-Tronco Neoplásicas/metabolismo , Fatores de Transcrição/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-38183635

RESUMO

Aims: Hepatic fibrosis is the pathological change during chronic liver diseases (CLD) that turns into cirrhosis if not reversed timely. Allogenic mesenchymal stem cell (MSC) therapy is an alternative to liver transplantation for CLD. However, poor engraftment of the transplanted MSCs limits their therapeutic efficacy. MSCs express chemokine receptors that regulate their physiology. We observed several-fold increased expressions of Cxcl3 and decreased expression of Mmp13 in the fibrotic liver. Therefore, we bioengineered MSCs with stable overexpression of Cxcr2 (CXCL3-cognate receptor) and Mmp13, collagenase (MSCGFPCxcr2-Mmp13). Results: The CXCL3/CXCR2 axis significantly increased migration through the activation of AKT/ERK/mTOR signaling. These bioengineered MSCs transdifferentiated into hepatocyte-like cells (MSCGFPCxcr2-Mmp13-HLCs) that endured the drug-/hepatotoxicant-induced toxicity by significantly increasing the antioxidants-Nrf2 and Sod2, while decreasing the apoptosis-Cyt C, Casp3, Casp9, and drug-metabolizing enzyme-Cyp1A1, Cyp1A2, Cyp2E1 markers. Therapeutic transplantation of MSCGFPCxcr2-Mmp13 abrogated AAP-/CCl4-induced hepatic fibrosis in mice by CXCR2-mediated targeted engraftment and MMP-13-mediated reduction in collagen. Mechanistically, induction of CXCL3/CXCR2 axis-activated mTOR-p70S6K signaling led to increased targeted engraftment and modulation of the oxidative stress by increasing the expression and activity of nuclear Nrf2 and SOD2 expression in the regenerated hepatic tissues. A marked change in the fate of transplanted MSCGFPCxcr2-Mmp13 toward hepatocyte lineage demonstrated by co-immunostaining of GFP/HNF4α along with reduced COL1α1 facilitated the regeneration of the fibrotic liver. Innovation and Conclusions: Our study suggests the therapeutic role of allogenic Cxcr2/Mmp13-bioengineered MSC transplantation decreases the hepatic oxidative stress as an effective translational therapy for hepatic fibrosis mitigation-mediated liver regeneration.

8.
Chem Biodivers ; 21(2): e202301429, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38221801

RESUMO

Short Title: Benzimidazoisoquinoline derivatives as potent antifibrotics Hepatic fibrosis is a pathological condition of liver disease with an increasing number of cases worldwide. Therapeutic strategies are warranted to target the activated hepatic stellate cells (HSCs), the collagen-producing cells, an effective strategy for controlling the disease progression. Benzimidazoisoquinoline derivatives were synthesized as hybrid molecules by the combination of benzimidazoles and isoquinolines to evaluate their anti-fibrotic potential using an in-vitro and in-vivo model of hepatic fibrosis. A small library of benzimidazoisoquinoline derivatives (1-17 and 18-21) was synthesized from 2-aryl benzimidazole and acetylene functionalities through C-H and N-H activation. Compounds (10 and its recently synthesized derivatives 18-21) depicted a significant decrease in PDGF-BB and/or TGFß-induced proliferation (1.7-1.9 -fold), migration (3.5-5.0 -fold), and fibrosis-related gene expressions in HSCs. These compounds could revert the hepatic damage caused by chronic exposure to hepatotoxicants, ethanol, and/or carbon tetrachloride as evident from the histological, biochemical, and molecular analysis. Anti-fibrotic effect of the compounds was supported by the decrease in the malondialdehyde level, collagen deposition, and gene expression levels of fibrosis-related markers such as α-SMA, COL1α1, PDGFRß, and TGFRIIß in the preclinical models of hepatic fibrosis. In conclusion, the synthesized benzimidazoisoquinoline derivatives (compounds 18, 19, 20, and 21) possess anti-fibrotic therapeutic potential against liver fibrosis.


Assuntos
Colágeno , Cirrose Hepática , Camundongos , Animais , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Fibrose , Colágeno/farmacologia , Fígado
9.
Adv Wound Care (New Rochelle) ; 13(2): 70-82, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37534840

RESUMO

Objective: Hydrolyzed collagen-based matrices are widely used as wound care dressings. Information on the mechanism of action of such dressings is scanty. The objective of this study was to test the effect of a specific hydrolyzed collagen powder (HCP), which is extensively used for wound care management in the United States. Approach: The effects of HCP on resolution of wound inflammation, perfusion, closure, and breaking strength of the repaired skin were studied in an experimental murine model. Results: In early (day 7) inflammatory phase of wound macrophages, HCP treatment boosted phagocytosis and efferocytosis of wound-site macrophages. In these cells, inducible reactive oxygen species were also higher on day (d) 7. HCP treatment potentiated the expression of anti-inflammatory interleukin (IL)-10 cytokine and proangiogenic vascular endothelial growth factor (VEGF) production. Excisional wounds dressed with HCP showed complete closure on day 21, while the control wounds remained open. HCP treatment also demonstrated improved quality of wound healing as marked by the improved breaking strength of the closed wound tissue/repaired skin. Innovation: These data represent first evidence on the mechanism of action of clinically used HCP. Conclusion: HCP dressing favorably influenced both wound inflammation and vascularization. Improved breaking strength of HCP-treated repaired skin lays the rationale for future studies testing the hypothesis that HCP-treated closed wounds would show fewer recurrences.


Assuntos
Colágeno , Fator A de Crescimento do Endotélio Vascular , Camundongos , Animais , Pós/farmacologia , Colágeno/farmacologia , Cicatrização , Bandagens , Inflamação/metabolismo , Perfusão
10.
Diabetes Metab Syndr Obes ; 16: 2187-2223, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37521747

RESUMO

Diabetes mellitus (DM) is a chronic metabolic disorder recognized as a major health problem globally. A defective insulin activity contributes to the prevalence and expansion of DM. Treatment of DM is often hampered by limited options of conventional therapies and adverse effects associated with existing procedures. This has led to a spike in the exploration for potential therapeutic agents from various natural resources for clinical applications. The marine environment is a huge store of unexplored diversity of chemicals produced by a multitude of organisms. To date, marine microorganisms, microalgae, macroalgae, corals, sponges, and fishes have been evaluated for their anti-diabetic properties. The structural diversity of bioactive metabolites discovered has shown promising hypoglycaemic potential through in vitro and in vivo screenings via various mechanisms of action, such as PTP1B, α-glucosidase, α-amylase, ß-glucosidase, and aldose reductase inhibition as well as PPAR alpha/gamma dual agonists activities. On the other hand, hypoglycaemic effect is also shown to be exerted through the balance of antioxidants and free radicals. This review highlights marine-derived chemicals with hypoglycaemic effects and their respective mechanisms of action in the management of DM in humans.

11.
Biochim Biophys Acta Mol Cell Res ; 1870(7): 119528, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37356459

RESUMO

Chemoresistance renders a challenge to the clinics to treat breast cancer patients. Current treatment strategies are effective in mitigating tumor growth but remain largely ineffective against cancer-initiating cells or breast Cancer Stem Cells (CSCs). Epithelial-to-mesenchymal-transition (EMT) regulates breast CSC physiology. Zinc finger E-box binding homeobox 1 (ZEB1) is a key EMT-transcription factor that regulates breast CSC - differentiation and metastasis. However, its potential role in modulating tumor chemoresistance has not yet been fully understood. In-silico analysis revealed a higher ZEB1 expression in breast cancer patients that leads to decreased overall and relapse-free survival. We generated sorted breast CSC with stable ZEB1 overexpression (CD24-/CD44+GFP-ZEB1) and/or silencing (CD24-/CD44+ZEB1 shRNA) as well as breast cancer cells with stable ZEB1 overexpression (CD24+GFP-ZEB1) and/or silencing (CD24+ZEB1 shRNA). An increased colony-forming efficiency and doxorubicin accumulation correlated with decreased promoter activity and expression profile of ABCC1 drug-efflux ABC transporter in CD24-/CD44+GFP-ZEB1. Additionally, CD24-/CD44+GFP-ZEB1 demonstrated doxorubicin-induced higher anti-apoptotic and lower pro-apoptotic protein expressions in the mitochondrial and cytosolic fractions. Chemoresistant CD24-/CD44+GFP-ZEB1 cells depicted 1000-fold higher IC-50 values of doxorubicin and decreased activation of JNK-p38 stress kinase molecular signaling-dependent mammosphere forming efficiency to evade apoptosis. Thus, ZEB1 and its downstream effectors are plausible therapeutic targets for the mitigation of breast cancer chemoresistance in patients.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Doxorrubicina/farmacologia , Doxorrubicina/metabolismo , RNA Interferente Pequeno/metabolismo , Apoptose/genética , Células-Tronco Neoplásicas , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
12.
ACS Nano ; 17(11): 10393-10406, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37228184

RESUMO

Infectious bacterial biofilms are recalcitrant to most antibiotics compared to their planktonic version, and the lack of appropriate therapeutic strategies for mitigating them poses a serious threat to clinical treatment. A ternary heterojunction material derived from a Bi-based perovskite-TiO2 hybrid and a [Ru(2,2'-bpy)2(4,4'-dicarboxy-2,2'-bpy)]2+ (2,2'-bpy, 2,2'-bipyridyl) as a photosensitizer (RuPS) is developed. This hybrid material is found to be capable of generating reactive oxygen species (ROS)/reactive nitrogen species (RNS) upon solar light irradiation. The aligned band edges and effective exciton dynamics between multisite heterojunctions are established by steady-state/time-resolved optical and other spectroscopic studies. Proposed mechanistic pathways for the photocatalytic generation of ROS/RNS are rationalized based on a cascade-redox processes arising from three catalytic centers. These ROS/RNS are utilized to demonstrate a proof-of-concept in treating two elusive bacterial biofilms while maintaining a high level of biocompatibility (IC50 > 1 mg/mL). The in situ generation of radical species (ROS/RNS) upon photoirradiation is established with EPR spectroscopic measurements and colorimetric assays. Experimental results showed improved efficacy toward biofilm inactivation of the ternary heterojunction material as compared to their individual/binary counterparts under solar light irradiation. The multisite heterojunction formation helped with better exciton delocalization for an efficient catalytic biofilm inactivation. This was rationalized based on the favorable exciton dissociation followed by the onset of multiple oxidation and reduction sites in the ternary heterojunction. This together with exceptional photoelectric features of lead-free halide perovskites outlines a proof-of-principle demonstration in biomedical optoelectronics addressing multimodal antibiofilm/antimicrobial modality.


Assuntos
Biofilmes , Bismuto , Bismuto/farmacologia , Bismuto/química , Espécies Reativas de Oxigênio
13.
J Cell Commun Signal ; 17(3): 549-561, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37103689

RESUMO

Hepatic fibrosis is the common pathological change that occurs due to increased synthesis and accumulation of extracellular matrix components. Chronic insult from hepatotoxicants leads to liver cirrhosis, which if not reversed timely using appropriate therapeutics, liver transplantation remains the only effective therapy. Often the disease further progresses into hepatic carcinoma. Although there is an increased advancement in understanding the pathological phenotypes of the disease, additional knowledge of the novel molecular signaling mechanisms involved in the disease progression would enable the development of efficacious therapeutics. Ephrin-Eph molecules belong to the largest family of receptor tyrosine kinases (RTKs) which are identified to play a crucial role in cellular migratory functions, during morphological and developmental stages. Additionally, they contribute to the growth of a multicellular organism as well as in pathological conditions like cancer, and diabetes. A wide spectrum of mechanistic studies has been performed on ephrin-Eph RTKs in various hepatic tissues under both normal and diseased conditions revealing their diverse roles in hepatic pathology. This systematic review summarizes the liver-specific ephrin-Eph RTK signaling mechanisms and recognizes them as druggable targets for mitigating hepatic pathology.

14.
Curr Res Transl Med ; 71(1): 103365, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36427419

RESUMO

Acute and chronic liver diseases are the major cause of high morbidity and mortality globally. Liver transplantation is a widely used therapeutic option for liver failure. However, the shortage of availability of liver donors has encouraged research on the alternative approach to liver regeneration. Cell-based regenerative medicine is the best alternative therapy to cater to this need. To date, advanced preclinical approaches have been undertaken on stem cell differentiation and their use in liver tissue engineering for generating efficacious and promising regenerative therapies. Advancements in the bioengineering of stem cells, and organoid generation are the way forward to efficient therapies against liver injury. This review summarizes the recent approaches for stem cell therapy-based liver regeneration and their proof of concepts for clinical application, bioengineering liver organoids to alleviate the liver failure caused due to chronic liver diseases.


Assuntos
Hepatopatias , Falência Hepática , Humanos , Regeneração Hepática , Engenharia Tecidual , Hepatopatias/terapia , Falência Hepática/terapia , Células-Tronco
15.
Mol Biol Rep ; 50(1): 215-225, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36319789

RESUMO

BACKGROUND: Breast cancer patients undergoing chemotherapy encounter a significant challenge of chemoresistance because of drug efflux by ATP-binding cassette (ABC) transporters. Breast cancer cell density alters considerably throughout the early stages of primary and secondary tumor development. Although cell density in culture influences kinetics, the effects of varying cell densities on the chemoresistance of breast cancer cells remains largely unexplored. METHODS AND RESULTS: We observed chemotherapeutics-induced differential gene and protein expression of ABC transporters in luminal and basal breast cancer cells cultured at low and high seeding densities. Low-density cultures depicted a significant increase in the mRNA expression of ABC transporters-ABCG2, ABCG1, ABCC4, ABCA2, ABCA3, ABCC2, ABCC3, ABCC6, ABCC7, and ABCC9 as compared with high-density cultures. Next, cells at both low and high seeding densities when pre-treated with cyclosporine A (CsA), a pan-inhibitor of ABC transporters, resulted in increased sensitization to chemotherapeutics-doxorubicin and tamoxifen at markedly low IC50 concentrations suggesting the role of ABC transporters. Finally, markedly high doxorubicin-drug accumulation, significantly increased expression of N-cadherin, and a significant decrease in chemotherapeutics-induced in vitro tumorigenesis was observed in low-density seeded breast cancer cells when pre-treated with CsA suggesting ABC transporters inhibition-mediated increased efficacy of chemotherapeutics. CONCLUSION: These findings suggest that breast cancer cells grown at low seeding density imparts chemoresistance towards doxorubicin or tamoxifen by a differential increase in the expression of ABC transporters. Thus, a combinatorial treatment strategy including ABC transporter inhibitors and chemotherapeutics can be a way forward for overcoming the breast cancer chemoresistance.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Neoplasias da Mama , Humanos , Feminino , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Contagem de Células
16.
Mol Ther ; 31(5): 1402-1417, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36380587

RESUMO

Extracellular vesicles (EVs) are nanovesicles released by all eukaryotic cells. This work reports the first nanoscale fluorescent visualization of tumor-originating vesicles bearing an angiogenic microRNA (miR)-126 cargo. In a validated experimental model of lethal murine vascular neoplasm, tumor-originating EV delivered its miR-126 cargo to tumor-associated macrophages (TAMs). Such delivery resulted in an angiogenic (LYVE+) change of state in TAM that supported tumor formation. Study of the trafficking of tumor-originating fluorescently tagged EV revealed colocalization with TAM demonstrating uptake by these cells. Ex vivo treatment of macrophages with tumor-derived EVs led to gain of tumorigenicity in these isolated cells. Single-cell RNA sequencing of macrophages revealed that EV-borne miR-126 characterized the angiogenic change of state. Unique gene expression signatures of specific macrophage clusters responsive to miR-126-enriched tumor-derived EVs were revealed. Topical tissue nanotransfection (TNT) delivery of an oligonucleotide comprising an anti-miR against miR-126 resulted in significant knockdown of miR-126 in the tumor tissue. miR-126 knockdown resulted in complete involution of the tumor and improved survival rate of tumor-affected mice. This work identifies a novel tumorigenic mechanism that relies on tumorigenic state change of TAM caused by tumor-originating EV-borne angiomiR. This disease process can be effectively targeted by topical TNT of superficial tumors.


Assuntos
Vesículas Extracelulares , MicroRNAs , Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Macrófagos/metabolismo , Fagocitose , Vesículas Extracelulares/metabolismo
17.
ACS Appl Mater Interfaces ; 15(21): 25148-25160, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35944204

RESUMO

Recently, the low-dimensional organic-inorganic halide perovskites (OIHP) have been exploited heavily for their favorable exciton dynamics, broad-band emission, remarkable stability, and tunable band-edge excited-state energy compared to their 3D counterparts for potential optoelectronic applications. Low-dimensional perovskites are generally good candidates for utilization as room-temperature photoluminescence (PL) materials. Further, doping divalent transition metals like Mn2+ into OIHP is expected to introduce a 4T1-6A1-based low-energy luminescence emission around 600 nm; an optical property that is favorable for biomedical optoelectronics. Doping Mn2+ in the perovskite lattice is also expected to induce the generation of cytotoxic singlet oxygen species (1O2), a ROS that is being exploited for various therapeutic applications. To integrate these optical and therapeutic properties of a 2D (PEA)2PbBr4 (Pb PeV; PEA = phenylethylammonium cation) perovskite alloyed with Mn2+ ions (Mn:PbPeV) and the option for a photoinduced energy transfer process involving a Cr(III)-based 1O2 generating photosensitizer (CrPS), we designed a unique purpose-built nanoassembly (Mn:PbPeV@PCD) using the encapsulation properties of a water-soluble polymer derived from ß-cyclodextrin (PCD). Here the PCD is observed to modulate the classical internal energy transfer of Pb2+ exciton to alloyed Mn2+ orange emission, resulting in the emergence of a new blue emission. The addition of CrPS into the Mn:PbPeV@PCD to generate the CrPS@Mn:PbPeV@PCD assembly results in restoring perovskite luminescence followed by the external energy transfer to CrPS. We have elucidated the mechanism of these cascade energy transfer processes between multiple components using steady-state and time-resolved luminescence techniques. Efficient ROS generation and its potential to induce an oxidation reaction of a biomolecule are realized using guanine as the target molecule. Further photoinduced cleavage studies with biomolecules confirmed the efficacy of the nanoassembly in inducing the cleavage of guanine-rich DNA. The study opens up a new direction in the field of perovskite for biomedical applications.

18.
Ann Surg ; 277(3): e634-e647, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35129518

RESUMO

OBJECTIVE: This work addressing complexities in wound infection, seeks to test the reliance of bacterial pathogen Pseudomonas aeruginosa (PA) on host skin lipids to form biofilm with pathological consequences. BACKGROUND: PA biofilm causes wound chronicity. Both CDC as well as NIH recognizes biofilm infection as a threat leading to wound chronicity. Chronic wounds on lower extremities often lead to surgical limb amputation. METHODS: An established preclinical porcine chronic wound biofilm model, infected with PA or Pseudomonas aeruginosa ceramidase mutant (PA ∆Cer ), was used. RESULTS: We observed that bacteria drew resource from host lipids to induce PA ceramidase expression by three orders of magnitude. PA utilized product of host ceramide catabolism to augment transcription of PA ceramidase. Biofilm formation was more robust in PA compared to PA ∆Cer . Downstream products of such metabolism such as sphingosine and sphingosine-1-phosphate were both directly implicated in the induction of ceramidase and inhibition of peroxisome proliferator-activated receptor (PPAR)δ, respectively. PA biofilm, in a ceram-idastin-sensitive manner, also silenced PPARδ via induction of miR-106b. Low PPARδ limited ABCA12 expression resulting in disruption of skin lipid homeostasis. Barrier function of the wound-site was thus compromised. CONCLUSIONS: This work demonstrates that microbial pathogens must co-opt host skin lipids to unleash biofilm pathogenicity. Anti-biofilm strategies must not necessarily always target the microbe and targeting host lipids at risk of infection could be productive. This work may be viewed as a first step, laying fundamental mechanistic groundwork, toward a paradigm change in biofilm management.


Assuntos
PPAR delta , Pseudomonas aeruginosa , Animais , Ceramidases , Extremidade Inferior , Suínos
19.
Nano Today ; 522023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38282661

RESUMO

Exosomes, a class of extracellular vesicles of endocytic origin, play a critical role in paracrine signaling for successful cell-cell crosstalk in vivo. However, limitations in our current understanding of these circulating nanoparticles hinder efficient isolation, characterization, and downstream functional analysis of cell-specific exosomes. In this work, we sought to develop a method to isolate and characterize keratinocyte-originated exosomes (hExoκ) from human chronic wound fluid. Furthermore, we studied the significance of hExoκ in diabetic wounds. LC-MS-MS detection of KRT14 in hExoκ and subsequent validation by Vesiclepedia and Exocarta databases identified surface KRT14 as a reliable marker of hExoκ. dSTORM nanoimaging identified KRT14+ extracellular vesicles (EVκ) in human chronic wound fluid, 23% of which were of exosomal origin. An immunomagnetic two-step separation method using KRT14 and tetraspanin antibodies successfully isolated hExoκ from the heterogeneous pool of EV in chronic wound fluid of 15 non-diabetic and 22 diabetic patients. Isolated hExoκ (Ø75-150nm) were characterized per EV-track guidelines. dSTORM images, analyzed using online CODI followed by independent validation using Nanometrix, revealed hExoκ Ø as 80-145nm. The abundance of hExoκ was low in diabetic wound fluids and negatively correlated with patient HbA1c levels. The hExoκ isolated from diabetic wound fluid showed a low abundance of small bp RNA (<200 bp). Raman spectroscopy underscored differences in surface lipids between non-diabetic and diabetic hExoκ Uptake of hExoκ by monocyte-derived macrophages (MDM) was low for diabetics versus non-diabetics. Unlike hExoκ from non-diabetics, the addition of diabetic hExoκ to MDM polarized with LPS and INFγ resulted in sustained expression of iNOS and pro-inflammatory chemokines known to recruit macrophage (mϕ) This work provides maiden insight into the structure, composition, and function of hExoκ from chronic wound fluid thus providing a foundation for the study of exosomal malfunction under conditions of diabetic complications such as wound chronicity.

20.
Rev Sci Instrum ; 93(11): 115105, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461487

RESUMO

The deteriorating water environment worldwide, mainly due to population explosion and uncontrolled direct disposal of harmful industrial and farming wastes, earnestly demands new approaches and accurate technologies to monitor water quality before consumption overcoming the shortcomings of the current methodologies. A spectroscopic water quality monitoring and early-warning instrument for evaluating acute water toxicity are the need of the hour. In this study, we have developed a prototype capable of the quantification of dissolved organic matter, dissolved chemicals, and suspended particulate matter in trace amounts dissolved in the water. The prototype estimates the water quality of the samples by measuring the absorbance, fluorescence, and scattering of the impurities simultaneously. The performance of the instrument was evaluated by detecting common water pollutants such as Benzopyrene, Crystal Violet, and Titanium di-oxide. The limit of detection values was found to be 0.50, 23.9, and 23.2 ppb (0.29 µM), respectively.


Assuntos
Benzo(a)pireno , Benzopirenos , Análise Espectral , Matéria Orgânica Dissolvida , Violeta Genciana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA