Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
3.
ACS Pharmacol Transl Sci ; 7(1): 120-136, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38230276

RESUMO

Triple-negative breast cancer (TNBC) poses significant challenges due to its aggressive nature and limited treatment options. In this study, we investigated the impact of urea-based compounds on TNBC cells to uncover their mechanisms of action and therapeutic potential. Notably, polypharmacology urea analogues were found to work via p53-related pathways, and their cytotoxic effects were amplified by the modulation of oxidative phosphorylation pathways in the mitochondria of cancer cells. Specifically, compound 1 demonstrated an uncoupling effect on adenosine triphosphate (ATP) synthesis, leading to a time- and concentration-dependent shift toward glycolysis-based ATP production in MDA-MB-231 cells. At the same time, no significant changes in ATP synthesis were observed in noncancerous MCF10A cells. Moreover, the unique combination of mitochondrial- and p53-related effects leads to a higher cytotoxicity of urea analogues in cancer cells. Notably, the majority of tested clinical agents, but sorafenib, showed significantly higher toxicity in MCF10A cells. To test our hypothesis of sensitizing cancer cells to the treatment via modulation of mitochondrial health, we explored the combinatorial effects of urea-based analogues with established chemotherapeutic agents commonly used in TNBC treatment. Synergistic effects were evident in most tested combinations in TNBC cell lines, while noncancerous MCF10A cells exhibited higher resistance to these combination treatments. The combination of compound 1 with SN38 displayed nearly 60-fold selectivity toward TNBC cells over MCF10A cells. Encouragingly, combinations involving compound 1 restored the sensitivity of TNBC cells to cisplatin. In conclusion, our study provides valuable insights into the mechanisms of action of urea-based compounds in TNBC cells. The observed induction of mitochondrial membrane depolarization, inhibition of superoxide dismutase activity, disruption of ATP synthesis, and cell-line-specific responses contribute to their cytotoxic effects. Additionally, we demonstrated the synergistic potential of compound 1 to enhance the efficacy of existing TNBC treatments. However, the therapeutic potential and underlying molecular mechanisms of urea-based analogues in TNBC cell lines require further exploration.

4.
Biomed Pharmacother ; 170: 115971, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38039760

RESUMO

Activated microglial cells in the central nervous system (CNS) are the main contributors to neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. Inhibiting their activation will help in reducing inflammation and oxidative stress during pathogenesis, potentially limiting the progression of the diseases. The immunomodulation properties of dental pulp-derived stem cells (DPSC) make it a promising therapy for neurodegenerative disorders. This study aims to determine whether secretory factors of DPSC (DPSC℗) inhibit inflammation and proliferation of microglial cells and define the molecular mechanisms. Our quantitative RT-PCR analysis showed that the DPSC℗ reduced the markers of the inflammation and induced anti-inflammatory molecules in microglial cells. DPSC ℗ reduced the intracellular and mitochondrial reactive oxygen species (ROS) production and mitochondrial membrane potential in microglial cells. In addition, DPSC ℗ decreased the cellular bioenergetics parameters related to oxygen consumption rate (OCAR) and extracellular acidification rate (ECAR). We found that DPSC℗ inhibited microglial cell proliferation by activating a checkpoint molecule, Chk1 leading an arrest at the G1 phase of the cell cycle. To define the mechanism, we performed the western blot analysis and observed that the MAPK P38 pathway was inhibited by DPSC℗. Furthermore, a System biology analysis revealed that the BDNF and GDNF, secretory factors of DPSC, blocked at the phosphorylation site (Tyr 182) of the P38 molecule resulting in the inhibition of downstream signaling of inflammation. These data suggest that the DPSC℗ may be a potential therapeutic agent for neurodegenerative diseases.


Assuntos
Microglia , Doenças Neurodegenerativas , Humanos , Transdução de Sinais , Células-Tronco/metabolismo , Inflamação/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo
5.
Stem Cell Rev Rep ; 19(8): 2886-2900, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37642902

RESUMO

BACKGROUND: Transplantation of stem cells for treating neurodegenerative disorders is a promising future therapeutic approach. However, the molecular mechanism underlying the neuronal differentiation of dental pulp-derived stem cells (DPSC) remains inadequately explored. The current study aims to define the regulatory role of KLF2 (Kruppel-like factor 2) during the neural differentiation (ND) of DPSC. METHODS: We first investigated the transcriptional and translational expression of KLF2, autophagy, and mitophagy-associated markers during the ND of DPSC by using quantitative RT-PCR and western blot methods. After that, we applied the chemical-mediated loss- and gain-of-function approaches using KLF2 inhibitor, GGPP (geranylgeranyl pyrophosphate), and KLF2 activator, GGTI-298 (geranylgeranyl transferase inhibitor-298) to delineate the role of KLF2 during ND of DPSC. The western blot, qRT-PCR, and immunocytochemistry were performed to determine the molecular changes during ND after KLF2 deficiency and KLF2 sufficiency. We also analyzed the oxygen consumption rate (OCR) and the extracellular acidification rate (ECAR) using the Seahorse XFe24 analyzer. RESULTS: Our study demonstrated that the expression level of KLF2, autophagy, and mitophagy-associated markers were significantly elevated during the ND of DPSC. Next, we found that the KLF2 inhibitor, GGPP significantly reduced the ND of DPSC. Inversely, KLF2 overexpression accelerated the molecular phenomenon of DPSC's commitment towards ND, indicating the crucial role of KLF2 in neurogenesis. Moreover, we found that the KLF2 positively regulated autophagy, mitophagy, and the Wnt5a signaling pathway during neurogenesis. Seahorse XFe24 analysis revealed that the ECAR and OCR parameters were significantly increased during ND, and inhibition of KLF2 marginally reversed them towards DPSC's cellular bioenergetics. However, KLF2 overexpression shifted the cellular energy metabolism toward the quiescent stage. CONCLUSION: Collectively, our findings provide the first evidence that the KLF2 critically regulates the neurogenesis of DPSC by inducing autophagy and mitophagy.


Assuntos
Polpa Dentária , Mitofagia , Autofagia , Diferenciação Celular , Células-Tronco , Fatores de Transcrição/metabolismo , Humanos
6.
PLoS One ; 18(1): e0279434, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36662725

RESUMO

Adoption of conservation agriculture (CA) is very slow due to weed infestations. The application of herbicides is the only viable option to deal with problem of weed management to adhere with basic principles of CA. A field experiment was carried out for three years to evaluate the expediency of different herbicides and their sequential applications under CA. In this study, seven treatments comprised of either alone or sequential application of pre-emergence (PE) and post-emergence (PoE) herbicides, hand weeding and weedy check were tested in soybean. Result indicated that sequential application of glyphosate at 1 kg ai ha-1 + pendimethalin at 1 kg ai ha-1as PE followed by PoE application of imazethapyr at 100 g ai ha-1 at 30 days after sowing (DAS) proved to be the best economical option in terms of plant growth parameters, crop biomass, seed yield, weed index and carbon and nutrient recycling. Pearson's correlation coefficients matrix revealed that grain yield was significantly (P<0.0001) related to weed density at harvest (r = -0.84), (WDH) (r = -0.63), weed dry biomass (WDB) (r = -0.52), weed nitrogen (N), phosphorus (P) and potassium (K) uptake (r = -0.56, r = -0.59 and r = -0.66), respectively and weed index (WI) (r = -0.96). The bivariate linear regression study of grain yield on weed control efficiency (WCI) biomass, N, P and K uptake by grain showed a clear significant (P<0.0001) dependence with R2 value of 0.53, 0.99, 0.95 and 0.98, respectively. The fitted stepwise multiple regression model also revealed that N and P uptake in grain, weed density at 20 DAS and K uptake in weed were actual predictor for grain yield. We concluded that, effective and economical weed control under CA in soybean can be achieved through sequential application of glyphosate along with pendimethalin at 1 kg ai ha-1 each PE followed by PoE use of imazethapyr at 100 g ai ha-1 at 30 DAS.


Assuntos
Herbicidas , Glycine max , Controle de Plantas Daninhas , Agricultura , Grão Comestível
7.
Cell Mol Neurobiol ; 43(5): 2105-2127, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36201091

RESUMO

Astrocytes have been implicated in the onset and complication of various central nervous system (CNS) injuries and disorders. Uncontrolled astrogliosis (gliosis), while a necessary process for recovery after CNS trauma, also causes impairments in CNS performance and functions. The ability to preserve astrocyte health and better regulate the gliosis process could play a major role in controlling damage in the aftermath of acute insults and during chronic dysfunction. Here in, we demonstrate the ability of dental pulp-derived stem cells (DPSCs) in protecting the health of astrocytes during induced gliosis. First of all, we have characterized the expression of genes in primary astrocytes that are relevant to the pathological conditions of CNS by inducing gliosis. Subsequently, we found that astrocytes co-cultured with DPSCs reduced ROS production, NRF2 and GCLM expressions, mitochondrial membrane potential, and mitochondrial functions compared to the astrocytes that were not co-cultured with DPSCs in gliosis condition. In addition, hyperactive autophagy was also decreased in astrocytes that were co-cultured with DPSCs compared to the astrocytes that were not co-cultured with DPSCs during gliosis. This reversal and mitigation of gliosis in astrocytes were partly due to induction of neurogenesis in DPSCs through enhanced expressions of the neuronal genes like GFAP, NeuN, and Synapsin in DPSCs and by secretion of higher amounts of neurotropic factors, such as BDNF, GDNF, and TIMP-2. Protein-Protein docking analysis suggested that BDNF and GDNF can bind with CSPG4 and block the downstream signaling. Together these findings demonstrate novel functions of DPSCs to preserve astrocyte health during gliosis.


Assuntos
Astrócitos , Gliose , Humanos , Fator Neurotrófico Derivado do Encéfalo , Polpa Dentária , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Células Cultivadas
8.
Dis Res ; 3(2): 74-86, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38213319

RESUMO

Background: Dental pulp-derived stem cells (DPSC) is a promising therapy as they modulate the immune response, so we evaluated the inhibitory effect of DPSC secretome (DPSC℗) on the proliferation and inflammation in human glioblastoma (GBM) cells (U-87 MG) and elucidated the concomitant mechanisms involved. Methods: The U87-MG cells were cultured with DPSC℗ for 24 h and assessed the expression of inflammatory molecules using quantitative reverse transcription-polymerase chain reaction (qRT-PCR), generation of reactive oxygen species (ROS), and mitochondrial functionality using a seahorse flux analyzer. MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) assay and cell cycle analysis were performed to evaluate the proliferation and cell cycle. Finally, the protein levels were determined by western blot. Results: DPSC℗ reduced the inflammation and proliferation of U-87 MG cells by down-regulating the pro-inflammatory markers and up-regulating anti-inflammatory markers expressions through ROS-mediated signaling. Moreover, DPSC℗ significantly reduced the mitochondrial membrane potential (MMP) in the cells. The cellular bioenergetics revealed that all the parameters of oxygen consumption rate (OCAR) and the extracellular acidification rate (ECAR) were significantly decreased in the GBM cells after the addition of DPSC℗. Additionally, DPSC℗ decreased the GBM cell proliferation by arresting the cell cycle at the G1 phase through activation (phosphorylation) of checkpoint molecule CHK1. Furthermore, mechanistically, we found that the DPSC℗ impedes the phosphorylation of the mitogen-activated protein kinases (P38 MAPK) and protein kinase B (AKT) pathway. Conclusion: Our findings lend the first evidence of the inhibitory effects of DPSC℗ on proliferation and inflammation in GBM cells by altering the P38 MAPK-AKT pathway.

9.
PLoS One ; 17(12): e0279831, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36584203

RESUMO

Tillage and crop residue management play an imperative role in soil physico-chemical properties that eventually affects crop productivity. The objective of the study to find out a compatible combination of tillage and crop residue management for achieving sustainable food production by improving soil properties, providing favorable environment to crop plants. Secondly, managing crop residues effectively to reduce environmental pollution arising due to crop residue burning. With this aim, a field experiment was conducted on six years continued running experiment under conservation agricultural practices during rabi season of 2019-20 on chickpea. The experiment was comprised of five tillage operations with or without crop residue in main plot and three levels of nutrients in sub plots laid out in split plot design with three replications. Reduced Tillage with 60cm residue height (RT60) was recorded higher growth and yield attributes over conventional tillage practice that attributed to economic yield enhancement. The percent yield increment under NT and RT with 30 and 60cm height residue retention varied from 6.91% to 9.67% over conventional tillage. Maximum grain (2380 kg ha-1) and biological output (5762 kg ha-1) was recorded under RT60 (T4), which ascribed to higher net return (Rs 60551 ha-1) and benefit-cost ratio (2.97). The augmentation in net monetary benefit among tillage systems was lies between 24.32% to 37.78% over conventional tillage. The seed protein content ranged between 20.38 to 21.69% among the treatments. Moreover, total N uptake was maximum under RT60, while total P and K uptake was higher in No Tillage with 30cm residue height (T1). No-Tillage with 60cm residue height (NT60) recorded relatively higher soil moisture content (SMC) (22.71 and 15.40%). Treatment NT30 accrued relatively higher value of soil bulk density (1.42 Mg m-3) followed by NT60 and RT60 in comparison to conventional tillage (1.34 Mg m-3). In conclusion, NT and RT with 60cm residue height along with STCR (N3) nutrient dose was found effective for sustainable food production.


Assuntos
Cicer , Agricultura , Solo/química , Índia , Nutrientes
10.
Cell Death Dis ; 13(10): 908, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36307395

RESUMO

A natural plant product, epigallocatechin-3-gallate (EGCG), was evaluated for its effectiveness in the regulation of osteoclastogenesis. We found that EGCG inhibited the osteoclast (OC) differentiation in vitro, and in primary bone marrow cells in a dose-dependent manner. Quantitative RT-PCR studies showed that the EGCG reduced the expression of OC differentiation markers. DCFDA, MitoSOX, and JC-1 staining revealed that the EGCG attenuated the reactive oxygen species (ROS), and mitochondrial membrane potential; and flux analysis corroborated the effect of EGCG. We further found that the EGCG inhibited mRNA and protein expressions of mitophagy-related molecules. We confirmed that the OC differentiation was inhibited by EGCG by modulating mitophagy through AKT and p38MAPK pathways. Furthermore, in silico analysis revealed that the binding of RANK and RANKL was blocked by EGCG. Overall, we defined the mechanisms of osteoclastogenesis during arthritis for developing a new therapy using a natural compound besides the existing therapeutics.


Assuntos
Catequina , Mitofagia , Catequina/farmacologia , Osteogênese , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo
11.
Biomolecules ; 12(9)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36139058

RESUMO

Polyphenolic compounds are a diverse group of natural compounds that interact with various cellular proteins responsible for cell survival, differentiation, and apoptosis. However, it is yet to be established how these compounds interact in myeloid cells during their differentiation and the molecular and intracellular mechanisms involved. Osteoclasts are multinucleated cells that originate from myeloid cells. They resorb cartilage and bone, maintain bone homeostasis, and can cause pathogenesis. Autophagy is a cellular mechanism that is responsible for the degradation of damaged proteins and organelles within cells and helps maintain intracellular homeostasis. Imbalances in autophagy cause various pathological disorders. The current study investigated the role of several polyphenolic compounds, including tannic acid (TA), gallic acid (GA), and ellagic acid (EA) in the regulation of osteoclast differentiation of myeloid cells. We demonstrated that polyphenolic compounds inhibit osteoclast differentiation in a dose-dependent manner. Quantitative real-time PCR, immunocytochemistry, and western blotting revealed that osteoclast markers, such as NFATc1, Cathepsin K, and TRAP were inhibited after the addition of polyphenolic compounds during osteoclast differentiation. In our investigation into the molecular mechanisms, we found that the addition of polyphenolic compounds reduced the number of autophagic vesicles and the levels of LC3B, BECN1, ATG5, and ATG7 molecules through the inactivation of Akt, thus inhibiting the autophagy process. In addition, we found that by decreasing intracellular calcium and decreasing ROS levels, along with decreasing mitochondrial membrane potential, polyphenolic compounds inhibit osteoclast differentiation. Together, this study provides evidence that polyphenolic compounds inhibit osteoclast differentiation by reducing ROS production, autophagy, intracellular Ca2+ level, and mitochondrial membrane potentials.


Assuntos
Osteoclastos , Ligante RANK , Autofagia , Cálcio/metabolismo , Catepsina K/metabolismo , Diferenciação Celular , Ácido Elágico/metabolismo , Ácido Gálico/metabolismo , Potencial da Membrana Mitocondrial , Osteoclastos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ligante RANK/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Taninos/metabolismo
12.
Biomedicines ; 10(8)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36009546

RESUMO

This work aimed to validate the potential use of dental pulp-derived stem cells (DPSCs) for the treatment of inflammation by defining their mechanisms of action. We planned to investigate whether priming of DPSC with proinflammatory molecules had any impact on their behavior and function. In the first step of our validation in vitro, we showed that priming of DPSCs with the bioactive agents LPS, TNF-α, or IFN-γ altered DPSCs' immunologic properties by increasing their expression levels of IL-10, HGF, IDO, and IL-4 and by decreasing their mitochondrial functions. Moreover, DPSCs induced accelerated wound healing irrespective of priming, as determined by using a gut epithelial cell line in a scratch wound assay. Wound healing of gut epithelial cells was mediated by regulating the expressions of AKT, NF-κB, and ERK1/2 proteins compared to the control epithelial cells. In addition, primed DPSCs altered monocyte polarization toward an immuno-suppressive phenotype (M2), where monocytes expressed higher levels of IL-4R, IL-6, Arg1, and YM-1 compared to monocytes cultured with control DPSCs. In silico analysis revealed that this was accomplished in part by the interaction between kynurenine and PPARγ, which regulated the expression of M2 differentiation-related genes. Collectively, these data provided evidence that the DPSCs reduced inflammation, induced M2 polarization of myeloid cells, and healed damaged gut epithelial cells through inactivation of inflammation and modulating constitutively active signaling pathways.

13.
Cells ; 11(15)2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35954256

RESUMO

Despite advances in diabetic wound care, many amputations are still needed each year due to their diabetic wounds, so a more effective therapy is warranted. Herein, we show that the dental pulp-derived stem cell (DPSC) products are effective in wound healing in diabetic NOD/SCID mice. Our results showed that the topical application of DPSC secretory products accelerated wound closure by inducing faster re-epithelialization, angiogenesis, and recellularization. In addition, the number of neutrophils producing myeloperoxidase, which mediates persisting inflammation, was also reduced. NFκB and its downstream effector molecules like IL-6 cause sustained pro-inflammatory activity and were reduced after the application of DPSC products in the experimental wounds. Moreover, the DPSC products also inhibited the activation of NFκB, and its translocation to the nucleus, by which it initiates the inflammation. Furthermore, the levels of TGF-ß, and IL-10, potent anti-inflammatory molecules, were also increased after the addition of DPSC products. Mechanistically, we showed that this wound-healing process was mediated by the upregulation and activation of Smad 1 and 2 molecules. In sum, we have defined the cellular and molecular mechanisms by which DPSC products accelerated diabetic wound closure, which can be used to treat diabetic wounds in the near future.


Assuntos
Diabetes Mellitus Experimental , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Inflamação/tratamento farmacológico , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , NF-kappa B , Células-Tronco , Cicatrização
14.
Cell Death Dis ; 13(5): 452, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35552354

RESUMO

Osteoblast differentiation is critically reduced in various bone-related pathogenesis, including arthritis and osteoporosis. For future development of effective regenerative therapeutics, herein, we reveal the involved molecular mechanisms of a phytoestrogen, ferutinin-induced initiation of osteoblast differentiation from dental pulp-derived stem cell (DPSC). We demonstrate the significantly increased expression level of a transcription factor, Kruppel-like factor 2 (KLF2) along with autophagy-related molecules in DPSCs after induction with ferutinin. The loss-of-function and the gain-of-function approaches of KLF2 confirmed that the ferutinin-induced KLF2 modulated autophagic and OB differentiation-related molecules. Further, knockdown of the autophagic molecule (ATG7 or BECN1) from DPSC resulted not only in a decreased level of KLF2 but also in the reduced levels of OB differentiation-related molecules. Moreover, mitochondrial membrane potential-related molecules were increased and induction of mitophagy was observed in DPSCs after the addition of ferutinin. The reduction of mitochondrial as well as total ROS generations; and induction of intracellular Ca2+ production were also observed in ferutinin-treated DPSCs. To test the mitochondrial respiration in DPSCs, we found that the cells treated with ferutinin showed a reduced extracellular acidification rate (ECAR) than that of their vehicle-treated counterparts. Furthermore, mechanistically, chromatin immunoprecipitation (ChIP) analysis revealed that the addition of ferutinin in DPSCs not only induced the level of KLF2, but also induced the transcriptionally active epigenetic marks (H3K27Ac and H3K4me3) on the promoter region of the autophagic molecule ATG7. These results provide strong evidence that ferutinin stimulates OB differentiation via induction of KLF2-mediated autophagy/mitophagy.


Assuntos
Cicloeptanos , Mitofagia , Autofagia/genética , Benzoatos , Compostos Bicíclicos com Pontes , Diferenciação Celular/genética , Células Cultivadas , Cicloeptanos/farmacologia , Osteoblastos , Sesquiterpenos , Fatores de Transcrição/farmacologia
15.
ACS Chem Neurosci ; 13(2): 217-228, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34978174

RESUMO

The dopaminergic system is involved in the regulation of immune responses in various homeostatic and disease conditions. For conditions such as Parkinson's disease and multiple sclerosis (MS), pharmacological modulation of dopamine (DA) system activity is thought to have therapeutic relevance, providing the basis for using dopaminergic agents as a treatment of relevant states. In particular, it was proposed that restoration of DA levels may inhibit neuroinflammation. We have recently reported a new class of dopamine transporter (DAT) inhibitors with high selectivity to the DAT over other G-protein coupled receptors tested. Here, we continue their evaluation as monoamine transporter inhibitors. Furthermore, we show that the urea-like DAT inhibitor (compound 5) has statistically significant anti-inflammatory effects and attenuates motor deficits and pain behaviors in the experimental autoimmune encephalomyelitis model mimicking clinical signs of MS. To the best of our knowledge, this is the first study reporting the beneficial effects of DAT inhibitor-based treatment in animals with induced autoimmune encephalomyelitis, and the observed results provide additional support to the model of DA-related neuroinflammation.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Proteínas da Membrana Plasmática de Transporte de Dopamina , Encefalomielite Autoimune Experimental/tratamento farmacológico , Esclerose Múltipla/tratamento farmacológico , Doenças Neuroinflamatórias , Ureia
16.
Clin Epigenetics ; 13(1): 192, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663428

RESUMO

To define the role of SETD2 in the WNT5a signaling in the context of osteoclastogenesis, we exploited two different models: in vitro osteoclast differentiation, and K/BxN serum-induced arthritis model. We found that SETD2 and WNT5a were upregulated during osteoclast differentiation and after induction of arthritis. Using gain- and loss-of-function approaches in the myeloid cell, we confirmed that SETD2 regulated the osteoclast markers, and WNT5a via modulating active histone marks by enriching H3K36me3, and by reducing repressive H3K27me3 mark. Additionally, during osteoclastic differentiation, the transcription of Wnt5a was also associated with the active histone H3K9 and H4K8 acetylations. Mechanistically, SETD2 directed induction of NF-κß expression facilitated the recruitment of H3K9Ac and H4K8Ac around the TSS region of the Wnt5a gene, thereby, assisting osteoclast differentiation. Together these findings for the first time revealed that SETD2 mediated epigenetic regulation of Wnt5a plays a critical role in osteoclastogenesis and induced arthritis. Model for the Role of SETD2 dependent regulation of osteoclastic differentiation. A In monocyte cells SETD2-dependent H3K36 trimethylation help to create open chromatin region along with active enhancer mark, H3K27Ac. This chromatin state facilitated the loss of a suppressive H3K27me3 mark. B Additionally, SETD2 mediated induction of NF-κß expression leads to the recruitment of histone acetyl transferases, P300/PCAF, to the Wnt5a gene and establish H3K9Ac and H4K8Ac marks. Along with other activation marks, these acetylation marks help in Wnt5a transcription which leads to osteoclastogenesis.


Assuntos
Epigênese Genética/genética , Histona-Lisina N-Metiltransferase/farmacologia , Osteogênese/genética , Proteína Wnt-5a/efeitos adversos , Animais , Artrite/imunologia , Artrite/fisiopatologia , Modelos Animais de Doenças , Histona-Lisina N-Metiltransferase/genética , Camundongos , Camundongos Endogâmicos C57BL , Osteogênese/fisiologia , Ativação Transcricional/genética , Proteína Wnt-5a/genética
17.
Clin Ophthalmol ; 15: 3097-3107, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34295148

RESUMO

PURPOSE: To report the subjective assessment of topical self-administered, cadaver-derived corneal epithelial stem cell supernatant for treatment of severe dry eye disease (DED). METHODS: Thirty-four eyes of 17 patients with advanced DED as defined by Standardized Patient Evaluation of Eye Dryness (SPEEDTM) questionnaire ≥14, Ocular Surface Disease Index (OSDI©) score ≥40 and documented attempt of at least six conventional dry eye therapies were enrolled into a prospective clinical trial at a single private practice institution. Treatment consisted of patient self-administered topical instillation of the corneal epithelial stem cell-derived product four times daily in both eyes for 12 weeks. Patient-reported outcome measures (PROMs) were taken with the SPEEDTM questionnaire (the main outcome variable), OSDI© score and visual analog score (VAS; UNC Dry Eye Management Scale©), and objective clinical measurements were taken with best-corrected visual acuity (BCVA), corneal topographic index measurements and tear film osmolarity. These measurements were compared at baseline versus the endpoint at completion of the 12-week treatment. RESULTS: All 34 eyes tolerated the treatment without any adverse events or significant side effects. Compared with baseline, both the SPEEDTM questionnaire and the VAS significantly improved at the conclusion of the 12-week treatment (p = 0.0054 and p = 0.0202, respectively). The OSDI© improved by an average of 10.9 points after the treatment but was not statistically significant (p = 0.1409). There were no significant changes in any of the objective clinical measurements. None of the study subjects failed to complete the treatment course, experienced decrease in any of the PROMs or lost one or more lines of BCVA during the follow-up period. CONCLUSION: Topical corneal epithelial stem cell-derived supernatant that can be self-administered by the patient shows promise at improving patient symptoms and quality of life in the setting of severe DED that is unresponsive to conventional therapies.

18.
J Cell Mol Med ; 25(5): 2390-2403, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33511706

RESUMO

Osteoclasts (OCs) differentiate from the monocyte/macrophage lineage, critically regulate bone resorption and remodelling in both homeostasis and pathology. Various immune and non-immune cells help initiating activation of myeloid cells for differentiation, whereas hyper-activation leads to pathogenesis, and mechanisms are yet to be completely understood. Herein, we show the efficacy of dental pulp-derived stem cells (DPSCs) in limiting RAW 264.7 cell differentiation and underlying molecular mechanism, which has the potential for future therapeutic application in bone-related disorders. We found that DPSCs inhibit induced OC differentiation of RAW 264.7 cells when co-cultured in a contact-free system. DPSCs reduced expression of key OC markers, such as NFATc1, cathepsin K, TRAP, RANK and MMP-9 assessed by quantitative RT-PCR, Western blotting and immunofluorescence detection methods. Furthermore, quantitative RT-PCR analysis revealed that DPSCs mediated M2 polarization of RAW 264.7 cells. To define molecular mechanisms, we found that osteoprotegerin (OPG), an OC inhibitory factor, was up-regulated in RAW 264.7 cells in the presence of DPSCs. Moreover, DPSCs also constitutively secrete OPG that contributed in limiting OC differentiation. Finally, the addition of recombinant OPG inhibited OC differentiation in a dose-dependent manner by reducing the expression of OC differentiation markers, NFATc1, cathepsin K, TRAP, RANK and MMP9 in RAW 264.7 cells. RNAKL and M-CSF phosphorylate AKT and activate PI3K-AKT signalling pathway during osteoclast differentiation. We further confirmed that OPG-mediated inhibition of the downstream activation of PI3K-AKT signalling pathway was similar to the DPSC co-culture-mediated inhibition of OC differentiation. This study provides novel evidence of DPSC-mediated inhibition of osteoclastogenesis mechanisms.


Assuntos
Diferenciação Celular , Polpa Dentária/citologia , Osteoclastos/metabolismo , Osteoprotegerina/biossíntese , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo , Animais , Biomarcadores , Células Cultivadas , Técnicas de Cocultura , Regulação da Expressão Gênica , Humanos , Mediadores da Inflamação , Camundongos , Células Mieloides/citologia , Células Mieloides/metabolismo , Osteoclastos/citologia , Células RAW 264.7 , Células-Tronco/citologia , Estresse Fisiológico
19.
Methods Mol Biol ; 2193: 23-30, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32808255

RESUMO

Chronic nonhealing wounds impact nearly 15% of Medicare beneficiaries (8.2 million) in the United States costing $28-$32 billion annually. Despite advancement in wound management, approximately 8% of diabetic Medicare beneficiaries have a foot ulcer and 1.8% will have an amputation. The development of a regenerative approach is warranted to save these before-mentioned amputations. To this extent, herein, we describe the detailed methods in generating a type 1 diabetes mellitus (T1DM) condition in immunocompromised mice, inducing cutaneous wound, and application of dental pulp stem cell-derived secretory products for therapeutic assessment. This model helps in evaluating the efficacy of stem cell-based therapy and helps with the investigation of involved mechanisms in impaired cutaneous wound healing caused by hyperglycemic stress due to type 1 diabetes.


Assuntos
Polpa Dentária/transplante , Pé Diabético/terapia , Transplante de Células-Tronco/métodos , Cicatrização/genética , Animais , Polpa Dentária/citologia , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/terapia , Pé Diabético/complicações , Pé Diabético/patologia , Humanos , Camundongos , Pele/lesões , Pele/patologia , Células-Tronco/citologia
20.
Methods Mol Biol ; 2193: 41-48, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32808257

RESUMO

Despite significant advances in diabetic wound management, diabetic wounds remain a significant global problem that decreases patient's quality of life, and chronic wounds may lead to amputation and death to the patients. To develop a potential regenerative therapy, a xenogeneic transplantation compatible laboratory model needs to be developed. This procedure demonstrates how to isolate hematopoietic stem cells (CD133+) from human umbilical cord blood, expand CD34+ stem cells using a nanofiber scaffold (polyether sulfone-coated and amino group-treated), induce diabetes in immunocompromised (NOD/SCID) mice, induce a cutaneous wound in mice, and how to treat the wound with the nanofiber-expanded CD34+ stem cells. This protocol also shows how to measure wound healing.


Assuntos
Complicações do Diabetes/terapia , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/citologia , Nanofibras/química , Dermatopatias/terapia , Animais , Complicações do Diabetes/patologia , Modelos Animais de Doenças , Sangue Fetal/transplante , Sobrevivência de Enxerto/genética , Humanos , Camundongos , Qualidade de Vida , Dermatopatias/patologia , Cicatrização/genética , Cicatrização/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA