Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 36(38)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38876090

RESUMO

In this paper, we report a detailed investigation of the crystal structure, magnetic, magnetocaloric, magneto-transport and electrical polarization properties of a new multiferroic material in the polycrystalline and nanocrystalline form of the Dy2MnCoO6double perovskite. Both compounds crystallized in the monoclinic structure with P21/n space group. The magnetic properties of both systems are mainly dominant ferromagnetic (FM) and weak antiferromagnetic (AFM). The FM/AFM coupling is related by the competing and combining functions of the radius and the magnetic moments of rare earth ions (i.e. 3d-4f exchange interactions). The reduction of the saturation magnetization in the isothermal magnetization curves can be explained by the existence of anti-phase boundaries and local anti-site defects in the system. Moreover, these materials hold reasonable values of magnetocaloric parameters and the absence of hysteresis makes the system a potential candidate for magnetic refrigeration. These compounds revealed two magnetic phase transitions, according to the appearance of two peaks in the temperature dependence of magnetic entropy change curves. The temperature dependent resistivity data for both the systems display semiconductor nature near room temperature and insulating like behavior at low temperature regime. The variable-range hopping conduction mechanism is used to best understand their transport mechanism. In addition, the electrical polarization loop at low temperature confirms the presence of ferroelectricity for both the studied systems. The decreases polarization under an external magnetic field evidence the weak magnetoelectric coupling. The coexistence of FM ordering with insulating behavior and ferroelectricity at low temperature promises new opportunities and improvements in next generation applications for information storage, spintronic, and sensors.

2.
J Phys Condens Matter ; 36(35)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38788725

RESUMO

This study explores the magnetic and magnetotransport behavior of polycrystalline ErAl3compound. The polycrystalline compound adopts HoAl3-type structures with the R-3m space group, No. 166-2 and hR60 configurations. Multiple magnetic orderings and two field-induced metamagnetic transitions are observed. ErAl3exhibits a significant magnetocaloric effect (MCE),-ΔSM= 15.25 J kg-1K-1and high relative cooling power of 383 J kg-1with applied magnetic field change (ΔH) of 70 kOe near the paramagnetic to ferromagnetic transition, showcasing its potential for magnetic refrigeration technology. The compound also demonstrates metallic behavior, with a notable magnetoresistance of 48.5%at 2 K due to the suppression of antiferromagnetism. The magnetic phase diagram reveals four distinct phases influenced by temperature and magnetic field, identified through the study of the MCE.

3.
J Phys Condens Matter ; 36(21)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38373352

RESUMO

The magnetic properties of orthorhombic aluminides have recently been the subject of investigation, revealing several intriguing phenomena within this class of materials. However, the exploration of their magnetic and electrical transport phenomena has remained somewhat limited. In this study, we delve into the magnetic and electrical transport characteristics of one such material from that group which is DyFe2Al10(DFA). Our findings go beyond classifying this material as a simple antiferromagnet; but it posses a short range ferromagnetic ordering apart from helical spin structure of Dy3+. It exhibits a metamagnetic transition and spin glass behavior below its Néel temperature (TN). Our analysis of electrical magnetotransport behavior indicates the emergence of an antiferromagnetic superzone gap, resulting in a significant enhancement in magnetoresistance effect. This discovery paves the way for a class of materials with complex interactions and notable magnetoresistance properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA