Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 14(1): 168, 2023 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-37357305

RESUMO

BACKGROUND: Osteoarthritis (OA) is a chronic debilitating disease impacting a significant percentage of the global population. While there are numerous surgical and non-invasive interventions that can postpone joint replacement, there are no current treatments which can reverse the joint damage occurring during the pathogenesis of the disease. While many groups are investigating the use of stem cell therapies in the treatment of OA, we still don't have a clear understanding of the role of these cells in the body, including heterogeneity of tissue resident adult mesenchymal progenitor cells (MPCs). METHODS: In the current study, we examined MPCs from the synovium and individuals with or without a traumatic knee joint injury and explored the chondrogenic differentiation capacity of these MPCs in vitro and in vivo. RESULTS: We found that there is heterogeneity of MPCs with the adult synovium and distinct sub-populations of MPCs and the abundancy of these sub-populations change with joint injury. Furthermore, only some of these sub-populations have the ability to effect cartilage repair in vivo. Using an unbiased proteomics approach, we were able to identify cell surface markers that identify this pro-chondrogenic MPC population in normal and injured joints, specifically CD82LowCD59+ synovial MPCs have robust cartilage regenerative properties in vivo. CONCLUSIONS: The results of this study clearly show that cells within the adult human joint can impact cartilage repair and that these sub-populations exist within joints that have undergone a traumatic joint injury. Therefore, these populations can be exploited for the treatment of cartilage injuries and OA in future clinical trials.


Assuntos
Lesões do Ligamento Cruzado Anterior , Cartilagem Articular , Células-Tronco Mesenquimais , Osteoartrite , Adulto , Humanos , Lesões do Ligamento Cruzado Anterior/metabolismo , Membrana Sinovial , Cartilagem/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteoartrite/patologia , Fenótipo , Cartilagem Articular/patologia
2.
Nat Commun ; 14(1): 1910, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024468

RESUMO

PRG4 is an extracellular matrix protein that maintains homeostasis through its boundary lubricating and anti-inflammatory properties. Altered expression and function of PRG4 have been associated with joint inflammatory diseases, including osteoarthritis. Here we show that mast cell tryptase ß cleaves PRG4 in a dose- and time-dependent manner, which was confirmed by silver stain gel electrophoresis and mass spectrometry. Tryptase-treated PRG4 results in a reduction of lubrication. Compared to full-length, cleaved PRG4 further activates NF-κB expression in cells overexpressing TLR2, -4, and -5. In the destabilization of the medial meniscus model of osteoarthritis in rat, tryptase ß and PRG4 colocalize at the site of injury in knee cartilage and is associated with disease severity. When human primary synovial fibroblasts from male osteoarthritis patients or male healthy subjects treated with tryptase ß and/or PRG4 are subjected to a quantitative shotgun proteomics and proteome changes are characterized, it further supports the role of NF-κB activation. Here we show that tryptase ß as a modulator of joint lubrication in osteoarthritis via the cleavage of PRG4.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Masculino , Animais , Ratos , Triptases/metabolismo , Proteoglicanas/metabolismo , Lubrificação , NF-kappa B/metabolismo , Osteoartrite/metabolismo , Inflamação/metabolismo , Cartilagem Articular/metabolismo
3.
Front Mol Biosci ; 9: 942406, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213120

RESUMO

The primary aim of the study was to identify inflammatory markers relevant for osteoarthritis (OA)-related systemic (plasma) and local (synovial fluid, SF) inflammation. From this, we looked for inflammatory markers that coincided with the increased amount of O-linked Tn antigen (GalNAcα1-Ser/Thr) glycan on SF lubricin. Inflammatory markers in plasma and SF in OA patients and controls were measured using a 44-multiplex immunoassay. We found consistently 29 markers detected in both plasma and SF. The difference in their concentration and the low correlation when comparing SF and plasma suggests an independent inflammatory environment in the two biofluids. Only plasma MCP-4 and TARC increased in our patient cohort compared to control plasma. To address the second task, we concluded that plasma markers were irrelevant for a direct connection with SF glycosylation. Hence, we correlated the SF-inflammatory marker concentrations with the level of altered glycosylation of SF-lubricin. We found that the level of SF-IL-8 and SF-MIP-1α and SF-VEGFA in OA patients displayed a positive correlation with the altered lubricin glycosylation. Furthermore, when exposing fibroblast-like synoviocytes from both controls and OA patients to glycovariants of recombinant lubricin, the secretion of IL-8 and MIP-1α and VEGFA were elevated using lubricin with Tn antigens, while lubricin with sialylated and nonsialylated T antigens had less or no measurable effect. These data suggest that truncated glycans of lubricin, as found in OA, promote synovial proinflammatory cytokine production and exacerbate local synovial inflammation.

4.
Cell Tissue Res ; 389(3): 483-499, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35704103

RESUMO

Mesenchymal progenitor cells (MPCs) have been recently identified in human and murine epidural fat and have been hypothesized to contribute to the maintenance/repair/regeneration of the dura mater. MPCs can secrete proteoglycan 4 (PRG4/lubricin), and this protein can regulate tissue homeostasis through bio-lubrication and immunomodulatory functions. MPC lineage tracing reporter mice (Hic1) and human epidural fat MPCs were used to determine if PRG4 is expressed by these cells in vivo. PRG4 expression co-localized with Hic1+ MPCs in the dura throughout skeletal maturity and was localized adjacent to sites of dural injury. When Hic1+ MPCs were ablated, PRG4 expression was retained in the dura, yet when Prx1+ MPCs were ablated, PRG4 expression was completely lost. A number of cellular processes were impacted in human epidural fat MPCs treated with rhPRG4, and human MPCs contributed to the formation of epidural fat, and dura tissues were xenotransplanted into mouse dural injuries. We have shown that human and mouse MPCs in the epidural/dura microenvironment produce PRG4 and can contribute to dura homeostasis/repair/regeneration. Overall, these results suggest that these MPCs have biological significance within the dural microenvironment and that the role of PRG4 needs to be further elucidated.


Assuntos
Dura-Máter/metabolismo , Células-Tronco Mesenquimais , Proteoglicanas/metabolismo , Animais , Dura-Máter/citologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos
5.
Front Pharmacol ; 12: 787193, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34950038

RESUMO

Sjogren's syndrome (SS) is characterized by dysfunctional mucous membranes and dysregulated moisture-secreting glands resulting in various symptoms, including dry mouth and dry eyes. Here, we wanted to profile and compare the tear and saliva proteomes of SS patients to healthy controls. Tear and saliva samples were collected and subjected to an isotopic dimethylation labeling shotgun proteomics workflow to identify alterations in protein levels. In tear samples, we identified 83 upregulated and 112 downregulated proteins. Pathway enrichment analysis of the changing proteins by Metascape identified leukocyte transendothelial migration, neutrophil degranulation, and post-translation protein phosphorylation in tears of SS patients. In healthy controls' tears, an enrichment for proteins related to glycolysis, amino acid metabolism and apoptotic signaling pathway were identified. In saliva, we identified 108 upregulated and 45 downregulated proteins. Altered pathways in SS patients' saliva included cornification, sensory perception to taste and neutrophil degranulation. In healthy controls' saliva, an enrichment for proteins related to JAK-STAT signaling after interleukin-12 stimulation, phagocytosis and glycolysis in senescence were identified. Dysregulated protease activity is implicated in the initiation of inflammation and immune cell recruitment in SS. We identified 20 proteases and protease inhibitors in tears and 18 in saliva which are differentially expressed between SS patients and healthy controls. Next, we quantified endogenous proteoglycan 4 (PRG4), a mucin-like glycoprotein, in tear wash and saliva samples via a bead-based immune assay. We identified decreased levels of PRG4 in SS patients' tear wash compared to normal samples. Conversely, in saliva, we found elevated levels of PRG4 concentration and visualized PRG4 expression in human parotid gland via immunohistological staining. These findings will improve our mechanistic understanding of the disease and changes in SS patients' protein expression will help identify new potential drug targets. PRG4 is among the promising targets, which we identified here, in saliva, for the first time.

6.
Exp Eye Res ; 208: 108628, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34048779

RESUMO

Dry eye disease (DED) affects hundreds of millions of people worldwide. It is characterized by the production of inflammatory cytokines and chemokines as well as damaging matrix metalloproteinases (MMPs) at the ocular surface. While proteoglycan 4 (PRG4), a mucin-like glycoprotein present at the ocular surface, is most well known as a boundary lubricant that contributes to ocular surface integrity, it has been shown to blunt inflammation in various cell types, suggesting a dual mechanism of action. Recently, full-length recombinant human PRG4 (rhPRG4) has been shown to improve signs and symptoms of DED in humans. However, there remains a significant need for basic science research on rhPRG4's biological properties and its potential therapeutic mechanisms of action in treating DED. Therefore, the objectives of this study were to characterize endogenous PRG4 expression by telomerase-immortalized human corneal epithelial (hTCEpi) cells, examine whether exogenous rhPRG4 modulates cytokine and chemokine secretion in response to dry eye associated inflammation (TNFα and IL-1ß), explore interactions between rhPRG4 and MMP-9, and understand how experimental dry eye (EDE) in mice affects PRG4 expression. PRG4 secretion from hTCEpi cells was quantified by Western blot and expression visualized by immunocytochemistry. Cytokine/chemokine production was measured by ELISA and Luminex, while rhPRG4's effect on MMP-9 activity, binding, and expression was quantified using an MMP-9 inhibitor kit, surface plasmon resonance, and reverse transcription polymerase chain reaction (RT-PCR), respectively. Finally, EDE was induced in mice, and PRG4 was visualized by immunohistochemistry in the cornea and by Western blot in lacrimal gland lysate. In vitro results demonstrate that hTCEpi cells synthesize and secrete PRG4, and PRG4 secretion is inhibited by TNFα and IL-1ß. In response to these pro-inflammatory stresses, exogenous rhPRG4 significantly reduced the stimulated production of IP-10, RANTES, ENA-78, GROα, MIP-3α, and MIG, and trended towards a reduction of MIP-1α and MIP-1ß. The hTCEpi cells were also able to internalize fluorescently-labelled rhPRG4, consistent with a mechanism of action that includes downstream biological signaling pathways. rhPRG4 was not digested by MMP-9, and it did not modulate MMP-9 gene expression in hTCEpi cells, but it was able to bind to MMP-9 and inhibited in vitro activity of exogenous MMP-9 in the presence of human tears. Finally, in vivo results demonstrate that EDE significantly decreased immunolocalization of PRG4 on the corneal epithelium and trended towards a reduction of PRG4 in lacrimal gland lysate. Collectively these results demonstrate rhPRG4 has anti-inflammatory properties on corneal epithelial cells, particularly as it relates to mitigating chemokine production, and is an inhibitor of MMP-9 activity, as well as that in vivo expression of PRG4 can be altered in preclinical models of DED. In conclusion, these findings contribute to our understanding of PRG4's immunomodulatory properties in the context of DED inflammation and provide the foundation and motivation for further mechanistic research of PRG4's properties on the ocular surface as well as expanding clinical evaluation of its ability as a multifunctional therapeutic agent to effectively provide relief to those who suffer from DED.


Assuntos
Síndromes do Olho Seco/genética , Epitélio Corneano/metabolismo , Regulação da Expressão Gênica , Inflamação/genética , Proteoglicanas/genética , RNA/genética , Lágrimas/metabolismo , Western Blotting , Células Cultivadas , Quimiocinas/metabolismo , Síndromes do Olho Seco/complicações , Síndromes do Olho Seco/patologia , Ensaio de Imunoadsorção Enzimática , Epitélio Corneano/patologia , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Proteoglicanas/biossíntese
7.
Pharmaceuticals (Basel) ; 14(1)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396445

RESUMO

Matrix metalloproteinases (MMPs) have been demonstrated to have both detrimental and protective functions in inflammatory diseases. Several MMP inhibitors, with the exception of Periostat®, have failed in Phase III clinical trials. As an alternative strategy, recent efforts have been focussed on the development of more selective inhibitors or targeting other domains than their active sites through specific small molecule inhibitors or monoclonal antibodies. Here, we present some examples that aim to better understand the mechanisms of conformational changes/allosteric control of MMPs functions. In addition to MMP inhibitors, we discuss unbiased global approaches, such as proteomics and N-terminomics, to identify new MMP substrates. We present some examples of new MMP substrates and their implications in regulating biological functions. By characterizing the roles and substrates of individual MMP, MMP inhibitors could be utilized more effectively in the optimal disease context or in diseases never tested before where MMP activity is elevated and contributing to disease progression.

8.
Int J Mol Sci ; 20(16)2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31394726

RESUMO

Matrix metalloproteinases (MMPs) have been studied in the context of cancer due to their ability to increase cell invasion, and were initially thought to facilitate metastasis solely through the degradation of the extracellular matrix (ECM). MMPs have also been investigated in the context of their ECM remodeling activity in several acute and chronic inflammatory diseases. However, after several MMP inhibitors failed in phase III clinical trials, a global reassessment of their biological functions was undertaken, which has revealed multiple unanticipated functions including the processing of chemokines, cytokines, and cell surface receptors. Despite what their name suggests, the matrix aspect of MMPs could contribute to a lesser part of their physiological functions in inflammatory diseases, as originally anticipated. Here, we present examples of MMP substrates implicated in cell signaling, independent of their ECM functions, and discuss the impact for the use of MMP inhibitors.


Assuntos
Fenômenos Fisiológicos Celulares , Metaloproteinases da Matriz/metabolismo , Animais , Adesão Celular , Comunicação Celular , Morte Celular , Movimento Celular , Citocinas/metabolismo , Suscetibilidade a Doenças , Matriz Extracelular/metabolismo , Humanos , Transdução de Sinais , Receptor fas/metabolismo
9.
ACS Chem Biol ; 14(11): 2471-2483, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31393699

RESUMO

Dysregulated protease activity is often implicated in the initiation of inflammation and immune cell recruitment in gastrointestinal inflammatory diseases. Using N-terminomics/TAILS (terminal amine isotopic labeling of substrates), we compared proteases, along with their substrates and inhibitors, between colonic mucosal biopsies of healthy patients and those with ulcerative colitis (UC). Among the 1642 N-termini enriched using TAILS, increased endogenous processing of proteins was identified in UC compared to healthy patients. Changes in the reactome pathways for proteins associated with metabolism, adherens junction proteins (E-cadherin, liver-intestinal cadherin, catenin alpha-1, and catenin delta-1), and neutrophil degranulation were identified between the two groups. Increased neutrophil infiltration and distinct proteases observed in ulcerative colitis may result in extensive break down, altered processing, or increased remodeling of adherens junctions and other cellular functions. Analysis of the preferred proteolytic cleavage sites indicated that the majority of proteolytic activity and processing comes from host proteases, but that key microbial proteases may also play a role in maintaining homeostasis. Thus, the identification of distinct proteases and processing of their substrates improves the understanding of dysregulated proteolysis in normal intestinal physiology and ulcerative colitis.


Assuntos
Colite Ulcerativa/fisiopatologia , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/metabolismo , Proteólise , Proteômica/métodos , Adulto , Idoso , Sequência de Aminoácidos , Sítios de Ligação , Biópsia , Caderinas/metabolismo , Cateninas/metabolismo , Cromatografia Líquida de Alta Pressão , Colo/patologia , Feminino , Humanos , Marcação por Isótopo/métodos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Peptídeos/análise , Ligação Proteica , Transdução de Sinais
10.
Bioessays ; 41(1): e1800166, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30485469

RESUMO

Proteoglycan 4 (PRG4), first identified in synovial fluid, is an extracellular matrix structural protein in the joint implicated in reducing shear at the cartilage surface as well as controlling adhesion-dependent synovial growth and regulating bulk protein deposition onto the cartilage. However, recent evidence suggests that it can bind to and effect downstream signaling of a number of cell surface receptors implicated in regulating the inflammatory response. Therefore, we pose the hypothesis: Does PRG4 regulate the inflammatory response and maintain tissue homeostasis? Based on these novel findings implicating PRG4 as an inflammatory signaling molecule, we will present and discuss several hypotheses regarding potential mechanisms by which PRG4 may be able to regulate inflammation. If future studies can demonstrate that PRG4 is a potent inflammatory mediator, this will change current paradigms in the musculoskeletal and ophthalmological fields regarding the how the inflammatory microenvironment is regulated in these tissues and potentially others.


Assuntos
Homeostase , Inflamação/metabolismo , Proteoglicanas/fisiologia , Animais , Humanos , Proteoglicanas/imunologia , Proteoglicanas/metabolismo , Transdução de Sinais
11.
PLoS One ; 9(6): e100028, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24927127

RESUMO

Cricket has over the years gained much popularity in Asia, thus the number of cricket players has also grown in tandem. However, cricket players are not as fortunate as other athletes as they do not always have a standard cricket infrastructure to practice; therefore, the injury prevalence is expected to be high. Unfortunately, very few studies have been conducted to investigate the nature and pattern of cricket injuries prevalent to cricketers in this region. Therefore, a prospective cohort injury surveillance study was conducted during the Asian Cricket Council (ACC) Under-19 Elite Cup held in June 2013 in order to gather more data on the type of injuries sustained by cricket players. Overall, 31 injuries occurred to 28 players throughout the tournament, of which 7 injuries happened during practice sessions. The overall injury incidence rate (IIR) was 292.0 per 10,000 player hours (95% CI 176.9-407.1) and 10.4 per 10,000 balls faced and 2.6 per 1000 overs bowled delivered during batting and bowling, respectively. Injuries to the lower limb (IIR: 146; 95% CI 1.8-98.2) were the most frequent, followed by injuries to the upper limb (97.3;95% CI 30.2-164.5) and to the trunk and back (IIR: 36.5;95% CI 0.0-77.7). Sprain/strains (IIR 109.5;95% CI 38.4-180.7) to muscle/tendon and joint/ligament were the most commonly reported nature of injury. This is the first study investigating injury incidence among the players of the ACC. It provides an overview of injuries sustained by elite players' under-19 years of age from 10 Asian countries. The overall IIR is similar to earlier studies conducted in well-established cricket playing nations.


Assuntos
Traumatismos em Atletas/epidemiologia , Esportes , Entorses e Distensões/epidemiologia , Esportes Juvenis , Adolescente , Ásia , Criança , Pré-Escolar , Comportamento Competitivo , Humanos , Incidência , Masculino , Esportes/estatística & dados numéricos , Adulto Jovem , Esportes Juvenis/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA