Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(9)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38733050

RESUMO

Gait phase monitoring wearable sensors play a crucial role in assessing both health and athletic performance, offering valuable insights into an individual's gait pattern. In this study, we introduced a simple and cost-effective capacitive gait sensor manufacturing approach, utilizing a micropatterned polydimethylsiloxane dielectric layer placed between screen-printed silver electrodes. The sensor demonstrated inherent stretchability and durability, even when the electrode was bent at a 45-degree angle, it maintained an electrode resistance of approximately 3 Ω. This feature is particularly advantageous for gait monitoring applications. Furthermore, the fabricated flexible capacitive pressure sensor exhibited higher sensitivity and linearity at both low and high pressure and displayed very good stability. Notably, the sensors demonstrated rapid response and recovery times for both under low and high pressure. To further explore the capabilities of these new sensors, they were successfully tested as insole-type pressure sensors for real-time gait signal monitoring. The sensors displayed a well-balanced combination of sensitivity and response time, making them well-suited for gait analysis. Beyond gait analysis, the proposed sensor holds the potential for a wide range of applications within biomedical, sports, and commercial systems where soft and conformable sensors are preferred.


Assuntos
Marcha , Pressão , Dispositivos Eletrônicos Vestíveis , Tecnologia sem Fio , Humanos , Marcha/fisiologia , Tecnologia sem Fio/instrumentação , Análise da Marcha/métodos , Análise da Marcha/instrumentação , Eletrodos , Sapatos , Desenho de Equipamento
2.
IEEE Trans Biomed Circuits Syst ; 17(2): 202-228, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37028090

RESUMO

Rapid, high-sensitivity, and real-time characterization of microorganisms plays a significant role in several areas, including clinical diagnosis, human healthcare, early detection of outbreaks, and the protection of living beings. Integrating microbiology and electrical engineering promises the development of low-cost, miniaturized, autonomous, and high-sensitivity sensors to quantify and characterize bacterial strains at various concentrations. Electrochemical-based biosensors are receiving particular attention in microbiological applications among the different biosensing devices. Several approaches have been adopted to design and fabricate cutting-edge, miniaturized, and portable electrochemical biosensors to track and monitor bacterial cultures in real time. These techniques differ in their sensing interface circuits and microelectrode fabrication. The goals of this review are (1) to summarize the current state of CMOS sensing circuit designs in label-free electrochemical biosensors for bacteria monitoring and (2) to discuss the material and size of the electrodes used in electrochemical biosensors in microbiological applications. In this paper, we reviewed the latest and most advanced CMOS integrated interface circuits that have recently been used in electrochemical biosensors to identify and characterize bacteria species, such as impedance spectroscopy, capacitive, amperometry, and voltammetry, etc. In addition to the interface circuit design, other crucial factors, such as the material and scale of the electrodes, must be considered to increase the sensitivity of electrochemical biosensors. Surveying the literature in this field improves our knowledge about the impact of electrode designs and materials on sensing precision and will help future designers adapt, design, and fabricate appropriate electrode configurations based on their application. Thus, we summarized the conventional microelectrode designs and materials mainly employed in microbial sensors, including interdigitated electrodes (IDEs), microelectrode arrays (MEAs), paper, and carbon-based electrodes, etc.


Assuntos
Bactérias , Técnicas Biossensoriais , Humanos , Microeletrodos , Espectroscopia Dielétrica , Técnicas Eletroquímicas
3.
Biosens Bioelectron ; 160: 112220, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32339151

RESUMO

The patterned LIG flakes are generally not interconnected due to the line gap of the laser ray, leading to lower uniform conductivity and fragile graphene. Thus, the fabrication of a highly conductive and mechanically robust LIG-based biosensing platform remains challenging. In this study, the fabrication of a flexible electrochemical biosensor is reported based on poly (3, 4-ethylene dioxythiophene)-poly (styrene sulfonate) (PEDOT:PSS) modified 3-dimensional (3D) stable porous laser-induced graphene (LIG) for the detection of glucose and pH. PEDOT:PSS was spray-coated on the LIG to improve electrode robustness and deliver uniform electrical conductivity. The as-prepared PEDOT:PSS modified LIG (PP/LIG) was characterized using field-emission scanning electron microscopy (FESEM), x-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and Fourier-transform infrared spectroscopy (FTIR). Platinum and palladium nanoparticles (Pt@Pd) were successfully electrodeposited on PP/LIG, markedly enhancing the electrocatalytic activity for glucose detection. The fabricated biosensor exhibited an excellent amperometric response to glucose with a wide linear range of 10 µM - 9.2 mM, a high sensitivity of 247.3 µAmM-1cm-2, and a low detection limit (LOD) of 3 µM, with high selectivity. In addition, the pH sensor was functionalized by the polyaniline (PANI) on PP/LIG, and it also exhibited excellent potentiometric response with a high sensitivity of 75.06 mV/pH in the linear range of pH 4 - 7. Ultimately, the feasibility of the biosensor was confirmed by the analysis of human perspiration collected during physical exercise. This approach validates the utility of the novel fabrication procedure, and the potential of the LIG-conductive polymer composite for biosensing applications.


Assuntos
Glucose/análise , Grafite/química , Poliestirenos/química , Suor/química , Tiofenos/química , Técnicas Biossensoriais/métodos , Condutividade Elétrica , Técnicas Eletroquímicas/métodos , Humanos , Concentração de Íons de Hidrogênio , Limite de Detecção , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA