Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Org Lett ; 26(17): 3679-3684, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38647677

RESUMO

We describe an organophotoredox-catalyzed sp3 C-S coupling of N-sulfinylamines with bench-stable alkyltrifluoroborates as a latent nucleophilic counterpart en route to alkylsulfinamides in high efficiency. In contrast to the two-electron reactivity of traditional organometallic reagents, this catalytic method reports the single-electron process of an organometallic reagent with N-sulfinylamines in C-S coupling. This mild and scalable protocol offers operational simplicity and exceptional functional group compatibility, including ketone, ester, amide, nitrile, and halides, that is vulnerable to organolithium or Grignard reagents. Additionally, the sulfinamides are conveniently converted to a variety of important S(VI) compounds, like sulfonamides, sulfonimidamides, and sulfonimidates, among others.

2.
J Parasit Dis ; 48(1): 108-116, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38440748

RESUMO

Pigs breeds are an important livestock species mostly reared by economically lower incomesection of people in India. Within North-Eastern (NE) states, pig husbandry is very much popular hence maintain the livelihood of the rural native population. Gastrointentinal (GI) parasitic infectionisone of the major constraint in profitable pig production in this area. In the present study, the GI parasitism was investigated in 388 pigs in the three districts of Tripura, NE State of India. The examination of faecal samples revealed 61.65% overall prevalence of parasitic infestation, precisely6 GI parasitic species; including 4 nematodes and 2 protozoa, while 46.91% were the mixed infections.Metastrongylus spp. (17.53%), Strongyloids spp. (19.33%),Trichuris spp. (15.98%), Coccidia spp. (12.37%), and Balantidium coli (10.82%), were detected, however, Ascaris spp. was the most prevalentrecording 32.47%. The epidemiological factors including: age, sex, season, breed, area and farming system wise when considered as markers of study showed the highest prevalence of GI parasites in grower(6-12 months) stage, female, monsoon season, non-descript breeds, Khowai district and free range farming system, recorded 71.52%, 67.27%, 65.78%, 65.71%, 64.57%, and 69.44%, respectively. Overall, our study provides a baseline data for further investigation and formulation of strategies for control of GI parasitism in pigs in Tripura.

3.
Biom J ; 66(2): e2300037, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38368275

RESUMO

Conventional canonical correlation analysis (CCA) measures the association between two datasets and identifies relevant contributors. However, it encounters issues with execution and interpretation when the sample size is smaller than the number of variables or there are more than two datasets. Our motivating example is a stroke-related clinical study on pigs. The data are multimodal and consist of measurements taken at multiple time points and have many more variables than observations. This study aims to uncover important biomarkers and stroke recovery patterns based on physiological changes. To address the issues in the data, we develop two sparse CCA methods for multiple datasets. Various simulated examples are used to illustrate and contrast the performance of the proposed methods with that of the existing methods. In analyzing the pig stroke data, we apply the proposed sparse CCA methods along with dimension reduction techniques, interpret the recovery patterns, and identify influential variables in recovery.


Assuntos
Genômica , Acidente Vascular Cerebral , Animais , Suínos , Genômica/métodos , Análise de Correlação Canônica , Algoritmos
4.
J Biomol Struct Dyn ; : 1-23, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38197431

RESUMO

Hepatocellular carcinoma (HCC) is one of the most deadly disorders, with a relative survival rate of 36% in the last 5 years. After an extensive literature survey and pathophysiology analysis, PI3Kα was found to be a promising biological target as PIK3CA gene upregulation was observed in HCC, resulting in the loss of apoptosis of cells, which leads to uncontrollable growth and proliferation. Due to superior selectivity and promising therapeutic activity, the PI3K-targeted molecule library was selected, and the ligand preparation was executed. The study mainly focused on e-pharmacophore development, virtual screening and receptor-ligand docking analysis. Then, MMGBSA and ADME prediction analysis was performed with the top 10 molecules; for further analysis of ligand-receptor binding affinity at the catalytic binding site, induced fit docking was performed with the top two molecules. The analysis of quantum chemical stability descriptors, i.e., frontier molecular orbital analysis, was performed followed by molecular dynamics simulation of 100 ns to better understand the ligand-receptor binding. In this study, water map analysis played a significant role in the hit optimization and analysis of the thermodynamic properties of the receptor-ligand complex. The two hit molecules K894-1435 and K894-1045 represented superior docking scores, enhanced stability, and inhibitory action targeting Valine 851 amino acid residue at the catalytic binding site. Hence, the study has significance for the quest for selective PI3Kα inhibitors through the process of hit-to-lead optimization.Communicated by Ramaswamy H. Sarma.

5.
Mol Divers ; 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37715109

RESUMO

Non-small cell lung cancer (NSCLC) is a widespread and often aggressive form of cancer affecting people worldwide. PIK3CA missense mutations play a significant role in the progression of growth factor signaling in cancer, making PI3Kα an important biological target for inhibition against NSCLC. Natural product molecules with PI3Kα inhibitory activity are promising therapeutic agents for the treatment of NSCLC, owing to their selectivity and potentially lower toxicity compared to synthetic compounds. To discover new natural product molecules, we integrated ligand-based virtual screening with structure-based virtual screening. We developed a multi-ligand pharmacophore hypothesis, validated it with 3D Field-based QSAR, and screened a Natural-Product-Based Library (ChemDiv) containing 3601 molecules. After initial screening, 137 hit molecules were generated and further screened using the extra precision (XP) Glide docking protocol. The best ten molecules were selected for free binding energy (ΔG) analysis using MMGBSA and ADME predictions. For further optimization, the top four hits were subjected to induced fit docking (IFD), quantum chemical descriptors analysis by Frontier Molecular Orbital (FMO) studies, and a 100 ns molecular dynamics (MD) simulation. The compounds-S721-1955, CM4579-5085, S721-1963, and S721-1999-exhibited better results than the PI3Kα selective inhibitor alpelisib. In silico prediction analysis of S721-1955 and alpelisib revealed that the former exhibited superior selectivity theoretically, as evidenced by its higher affinity for the target protein. The selective natural product molecule identified in this study holds promise as a potential anti-cancer drug against NSCLC in the near future, but further in vitro and in vivo studies are necessary to confirm its efficacy.

6.
Nanoscale ; 15(37): 15288-15297, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37681636

RESUMO

Single-source white light emitting colloidal semiconductor quantum dots (QDs) is one of the most exciting and promising high-quality solid-state light sources to meet the current global demand for sustainable resources. While most of the previous methods involve dual (green-red) emissive nanostructures coated on blue LEDs to achieve white light, this work describes a single-source white light emitter of robust and superior quality using dual-doping. A modified synthesis method for intense white light emitting Cu, Mn dual-doped ZnSe QDs is engineered such that the extent of doping and concentration of ligands can alter their electronic structures. This is then customized to obtain various types of white light emissions ranging from warm white to cool white. Further, the composition-driven change in the electronic structure of the host QDs is exploited to achieve emission tunability over the entire visible range.

7.
J Biomol Struct Dyn ; : 1-17, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37378526

RESUMO

Alzheimer's disease (AD) is a neurological disorder that affects millions of people worldwide. There are currently no cures for AD, although various drugs are used to manage the symptoms and reduce the disease's progression. AChE inhibitors such as rivastigmine, donepezil, galantamine, and the NMDA glutamate receptor antagonist memantine are currently FDA-approved drugs used in the treatment of AD. Recently, naturally derived biological macromolecules have shown promising results in the treatment of AD. Several biological macromolecules derived from natural sources are in various stages of preclinical and clinical trials. During the literature search, it was observed that there is a lack of a comprehensive review that particularly focuses on the role of naturally derived biological macromolecules (protein, carbohydrates, lipids, and nucleic acids) in the treatment of AD and the structure-activity relationship (SAR) approach for understanding the medicinal chemistry perspective. This review focuses on the SAR and probable mechanisms of action of biological macromolecules derived from natural sources for the treatment of AD, including peptides, proteins, enzymes, and polysaccharides. The paper further addresses the therapeutic possibilities of monoclonal antibodies, enzymes, and vaccines for the treatment of AD. Overall, the review provides insight into the SAR of naturally derived biological macromolecules in the treatment of AD. The ongoing research in this field holds great promise for the future development of AD treatment and provides hope for individuals affected by this devastating disease.Communicated by Ramaswamy H. Sarma.

8.
J Biomol Struct Dyn ; 41(21): 11484-11497, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36803674

RESUMO

Lichens are symbiotic organisms that have been traditionally used for treating different kinds of ailments. As there are only a few reports on the antiviral activity of lichens, we thought of evaluating the anti-Herpes simplex virus-1 (HSV-1) activity of methanolic extract of Roccella montagnei and their isolated compounds. Fractionation of crude methanolic extract of Roccella montagnei by column chromatography isolated two pure compounds. Antiviral activity was assessed using a CPE inhibition assay at non-cytotoxic concentrations on Vero cells. Molecular docking and dynamics studies were carried out against Herpes simplex type-1 thymidine kinase to understand the binding interactions of the isolated compounds with reference to acyclovir. Isolated compounds were characterized as methyl orsellinate and montagnetol by spectral methods. Methanolic extract of Roccella montagnei exhibited an EC50 value of 56.51 µg/ml, while the compounds methyl orsellinate and montagnetol offered EC50 values of 13.50 µg/ml and 37.52 µg/ml, respectively, against HSV-1 viral infection on Vero cell lines. The selectively index (SI) of montagnetol (10.93) was found to be higher when compared to that of methyl orsellinate (5.55), indicating its better anti-HSV-1 activity. The docking and dynamics studies showed montagnetol was stable throughout the 100 ns, having better interactions and docking scores with HSV-1 thymidine kinase than methyl orsellinate, as well as the standard. To understand the mechanism of montagnetol's anti-HSV-1 activity, more research is required, and this could lead to the discovery of new and effective antiviral agents.Communicated by Ramaswamy H. Sarma.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Líquens , Animais , Chlorocebus aethiops , Antivirais/química , Células Vero , Líquens/química , Simulação de Acoplamento Molecular , Timidina Quinase/farmacologia , Timidina Quinase/uso terapêutico , Herpes Simples/tratamento farmacológico , Extratos Vegetais/farmacologia
9.
Org Lett ; 25(9): 1441-1446, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36820645

RESUMO

A visible-light-photocatalyzed 1,2-arylalkylation of N-(arylsulfonyl)acrylamides with ketone-based dihydroquinazolinones is described. The formal C-C bond cleavage of aliphatic ketones is unified with tandem radical alkylation/1,4-aryl migration/desulfonylation to forge two different types of vicinal C-C bonds and construct an all-carbon quaternary α-stereocenter, thus enhancing the carbogenic complexity and tolerating diverse functionalities. Additional to telescopic synthesis and product diversification, this method features a radical dicarbofunctionalization of conjugated N-(arylsulfonyl)acrylamides with a nucleophilic alkyl radical precursor (dihydroquinazolinone) utilizing oxygen as a green oxidant at ambient temperature.

10.
J Biomol Struct Dyn ; 41(8): 3462-3475, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35285757

RESUMO

Inflammatory bowel disease is a chronic disorder of the large intestine with the prevalence of approximately 400 cases in 100000, and it is rising day by day. However, several drugs like sulfasalazine (composed of sulfapyridine and 5-aminosalicylic acid or 5-ASA), corticosteroids, and immunosuppressants manage the disease. But there are no absolute treatments for the pain and inflammation of the disease. TNFα is an important target, and drugs like infliximab and adalimumab have pharmacological potency but with pronounced toxicity. So, we choose this major target TNFα for the virtual screening of US-FDA-approved drugs for its repurposing using the in silico method. The protein TNFα (PDB ID: 2AZ5) with small molecule inhibitor and the US-FDA-approved drug molecules (from Zinc database) were first imported and prepared using Protein Preparation Wizard and LigPrep, respectively, followed by molecular docking, ADMET analysis and prime MMGBSA. After that, the drugs were shortlisted according to dock score, ADMET parameters and MM GBSA dG binding score. After that, the shortlisted drug molecules were subjected to an induced-fit docking analysis. Two of the most promising molecules, ZINC000003830957 (Iopromide) and ZINC000003830635 (Deferoxamine), were chosen for molecular dynamics simulation. Finally, the bioisosteric replacement was used to improve the ADMET properties of these molecules. This research provides an idea for drug exploration and computational tools for drug discovery in treating inflammatory bowel disease.Communicated by Ramaswamy H. Sarma.


Assuntos
Doenças Inflamatórias Intestinais , Fator de Necrose Tumoral alfa , Humanos , Simulação de Acoplamento Molecular , Fator de Necrose Tumoral alfa/metabolismo , Reposicionamento de Medicamentos , Simulação de Dinâmica Molecular , Doenças Inflamatórias Intestinais/tratamento farmacológico
11.
CNS Neurol Disord Drug Targets ; 22(7): 973-993, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35770411

RESUMO

BACKGROUND: Diabetes mellitus and Alzheimer's disease are two common diseases that majorly affect the elderly population. Patients in both cases are increasing day by day. They are considered two independent diseases, but recent evidence suggests that they have a lot in common. OBJECTIVE: In this review, we focused on the connection between Alzheimer's disease and diabetes and highlighted the importance of antidiabetic drugs against Alzheimer's disease. METHODS: Common pathways such as obesity, vascular diseases, oxidative stress, mitochondrial dysfunction, mutation of the ApoE4 gene, and Sirtuin gene were found to manipulate both diseases. Antidiabetic drugs are found to have promising effects on Alzheimer's disease, acting by reducing insulin resistance, neuronal protection, and reducing amyloid-beta plaques. Some anti-diabetic drugs have shown promising results in vivo and in vitro studies. RESULTS: No review present focuses on the structural features of the antidiabetic molecules against Alzheimer's disease, their crosslinking pathophysiology, the role of natural bioactive molecules, in silico advancements followed by preclinical and clinical studies, and current advancements. Hence, we concentrated on the factors mentioned in the objectives. CONCLUSION: Alzheimer's disease can be considered a form of 'type-3 diabetes,' and repurposing the anti-diabetic drug will open up new paths of research in the field of Alzheimer's disease drug discovery.


Assuntos
Doença de Alzheimer , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Idoso , Humanos , Doença de Alzheimer/metabolismo , Hipoglicemiantes/uso terapêutico , Diabetes Mellitus Tipo 2/complicações , Peptídeos beta-Amiloides
12.
J Biomol Struct Dyn ; 41(20): 11286-11323, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36579430

RESUMO

Alzheimer's disease (AD) is a complex neurodegenerative disorder involving cognitive dysfunction like short-term memory and behavioral changes as the disease progresses due to other unaltered physiological factors. The solution for this problem is Multi-targeted Drugs (MTDs), which can affect multiple determinants to realize the multifunctional effects. Acetylcholinesterase (AChE) inhibitors donepezil, rivastigmine, galantamine, and N-methyl-D-aspartate (NMDA) receptor antagonist memantine are FDA-approved drugs used to treat AD symptomatically. The key objective of this review is to understand multitargeted bioactive natural molecules that could be considered as leads for further development as effective drugs for treating AD, along with understanding its pharmacology and structure-activity relationship (SAR). Understanding the molecular mechanism of the AD pathophysiology, the role of existing drugs, treatment of AD via amyloid beta (Aß) plaque, and neurofibrillary tangle (NFT) inhibition by natural bioactive molecules were also discussed in the review. The current quest and recent advancements with natural bioactive compounds like physostigmine, resveratrol, curcumin, and catechins, along with the study of in silico SAR, were reported in the present study. This review summarises the structural properties required for bioactive natural molecules to show anti-Alzheimer's activity by emphasizing on SAR of several bioactive natural molecules targeting various AD pathologies, their key molecular interactions that are critical for target specificity, their role as multitargeted ligands, used with adjunctive therapy for AD followed by related US patents granted recently. This article highlights the significance of the structural features of natural bioactive molecules in the treatment of AD and establishes a connection between them.Communicated by Ramaswamy H. Sarma.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides , Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Inibidores da Colinesterase/química , Relação Estrutura-Atividade
13.
J Biomol Struct Dyn ; 41(19): 9193-9210, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36326112

RESUMO

Inflammation and oxidative stress can contribute to the etiology of metabolic and chronic illnesses. The ability to prevent oxidative stress induced diseases such as cancer, cardiovascular disease, Alzheimer's disease, and others has been the subject of global research. Drug-induced liver injury (DILI) pathogenesis can be either due to oxidative stress or inflammatory response elicited by the drug, its metabolite, or herbal supplements. Our present research uses computational studies to identify a molecule with anti-inflammatory properties that can operate as an NRF2 activator. Acquiring and preparing the KEAP1-NRF2 Protein (PDB: 4L7D) with Schrodinger Suite was followed by developing a ligand library (Anti-inflammatory library downloaded from ChemDiv database). Molecular docking studies were performed in HTVS, SP, and XP modes, respectively. Based on the docking score, interaction, ADMET and binding free energy, the top ten compounds were selected and subjected to induced-fit docking (IFD) analysis for further study. The top three molecules were chosen for a molecular dynamics (MD) simulation study. Using the Desmond module of the Schrodinger Suite, the stability of the protein-ligand complex and protein-ligand contact throughout 100ns were evaluated during the MD simulation study. In our study, it was observed that three compounds exhibit exceptional stability and retain the essential interaction throughout the studies, and it is anticipated that these compounds may act as effective NRF2 activators. Further in vitro and in vivo assessments can be conducted to determine its potential to prevent DILI via acting as an NRF2 activator for future drug development.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Fator 2 Relacionado a NF-E2 , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Fator 2 Relacionado a NF-E2/metabolismo , Ligantes , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Simulação de Dinâmica Molecular , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Anti-Inflamatórios/farmacologia
14.
RSC Adv ; 12(33): 21452-21467, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35975074

RESUMO

Non-small cell lung cancer (NSCLC) is an obscure disease whose incidence is increasing worldwide day by day, and PI3Kα is one of the major targets for cell proliferation due to the mutation. Since PI3K is a class of kinase enzyme, and no in silico research has been performed on the inhibition of PI3Kα mutation by small molecules, we have selected the protein kinase inhibitor database and performed the energy minimization process by ligand preparation. The key objective of this research is to identify the potential hits from the protein kinase inhibitor library and further to perform lead optimization by a molecular docking and dynamics approach. And so, the protein was selected (PDB ID: 4JPS), having a unique inhibitor and a specific binding pocket with amino acid residue for the inhibition of kinase activity. After the docking protocol validation, structure-based virtual screening by molecular docking and MMGBSA binding affinity calculations were performed and a total of ten hits were reported. Detailed analysis of the best scoring molecules was performed with ADMET analysis, induced fit docking (IFD) and molecular dynamics (MD) simulation. Two molecules - 6943 and 34100 - were considered lead molecules and showed better results than the PI3K inhibitor Copanlisib in the docking assessment, ADMET analysis, and molecular dynamics simulation. Furthermore, the synthetic accessibility of the two compounds - 6943 and 34100 - was investigated using SwissADME, and the two lead molecules are easier to synthesize than the PI3K inhibitor Copanlisib. Computational drug discovery tools were used for identification of kinase inhibitors as anti-cancer agents for NSCLC in the present research.

15.
Drug Dev Res ; 83(7): 1555-1577, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35898169

RESUMO

We herein report a new series of indole-tethered pyrazoline derivatives as potent anticancer agents. A total of 12 compounds were designed and synthesized by conventional as well as microwave-irradiated synthesis methods. The latter method results in a significant reduction in the duration of reaction along with improved yields. All synthesized derivatives (7a-7l) were evaluated for their cytotoxic activity against A431, HeLa, and MDAMB-231 cell lines. Compounds 7a and 7b were found most potent in the series and demonstrated an IC50 value of 3.17 and 5.16 µM against the A431 cell line, respectively, compared to the standard drug doxorubicin. Compounds 7a and 7b significantly suppress colony formation, migration, and S phase cell cycle arrest of A431 cells. Furthermore, compound 7a regulated the expression of apoptotic proteins causing the downregulation of procaspase 3/9, antiapoptotic protein Bcl-xL, and upregulation of proapoptotic protein Bax in a dose-dependent manner. Topoisomerase enzyme inhibition assay confirmed that compounds 7a and 7b can significantly inhibit topoisomerase IIα. In vivo oral acute toxicity of compounds 7a and 7b revealed that both compounds are safe compared to doxorubicin; cardiomyopathy studies showed normal architecture of cardiomyocytes and myofibrils. In addition, molecular docking studies revealed the possible interaction of compounds 7a and 7b within the active binding site of the topoisomerase enzyme. The 100 ns molecular dynamic simulation of compounds 7a and 7b proved that both compounds validate all screening parameters.


Assuntos
Antineoplásicos , Humanos , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Estrutura Molecular , Antineoplásicos/química , Doxorrubicina/farmacologia , Indóis/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Apoptose
16.
Arch Pharm (Weinheim) ; 355(10): e2200146, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35665957

RESUMO

A new series of 2-aminobenzothiazole derivatives was designed, synthesized and evaluated for their anticancer activity against the MCF7, MDAMB-231, and HepG2 cancer cell lines. All synthesized derivatives (8a-8n) demonstrated moderate to high anticancer activity against the tested cell lines. As the most potent compound in the series, compound 8i displayed excellent inhibitory potency with an IC50 value of 6.34 µM and compound 8m displayed an IC50 value of 8.30 µM against the MCF7 cell line compared to the standard drug HS-173 (IC50 = 10.25 µM). PI3K enzyme activity assays demonstrated that compound 8i is highly selective against PI3Kα, with an IC50 value of 1.03 nM. Wound healing assays and cell cycle analysis of compounds 8i and 8m revealed that both compounds suppressed the migration of MCF7 cells and induce cell cycle arrest in the S phase. In the cell death assay, compound 8i was revealed to induce apoptosis in a dose-dependent pattern; further Western blot assays revealed that compound 8i obviously decreases the levels of the antiapoptotic proteins Bcl-xL and Mcl-1. Downregulation of the expression of p-Akt confirmed the PI3K inhibitory activity of compound 8i. The molecular docking and molecular dynamics simulation studies performed were found in agreement with the PI3Kα inhibitory activity assessments performed experimentally.


Assuntos
Antineoplásicos , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Proteína de Sequência 1 de Leucemia de Células Mieloides , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt , Relação Estrutura-Atividade
17.
Curr Med Chem ; 29(39): 6030-6062, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35579166

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) is a deadly disease that affects millions globally and its treatment includes surgery, chemotherapy, and radiotherapy. Chemotherapy and radiotherapy have many disadvantages, which include potential harmful side effects. Due to the widespread use of drugs in lung cancer, drug treatment becomes challenging due to multidrug resistance and adverse reactions. According to the recent findings, natural products (NPs) and their derivatives are being used to inhibit and suppress cancer cells. OBJECTIVE: Our objective is to highlight the importance of phytochemicals for treating NSCLC by focusing on the structural features essential for the desired activity with fewer side effects compared to synthetic molecules. METHODS: This review incorporated data from the most recent literature, including in vitro, in vivo, nanoformulation-based recent advancements, and clinical trials, as well as the structure-activity relationship (SAR), described for a variety of possible natural bioactive molecules in the treatment of NSCLC. RESULTS: The analysis of data from recent in vitro, in vivo studies and ongoing clinical trials are highlighted. The SAR studies of potential NPs signify the presence of several common structural features that can be used to guide future drug design and development. CONCLUSION: The role of NPs in the battle against NSCLC can be effective, as evidenced by their structural diversity and affinity toward various molecular targets. The main purpose of the review is to gather information about NPs used in the treatment of NSCLC.


Assuntos
Produtos Biológicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistência a Múltiplos Medicamentos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Relação Estrutura-Atividade
18.
Drug Dev Res ; 83(4): 859-890, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35297084

RESUMO

Cancer is one of the leading causes of death. Globally a huge number of deaths and new incidences are reported annually. Heterocyclic compounds have been proved to be very effective in the treatment of different types of cancer. Among different heterocyclic scaffolds, quinazoline and quinazolinone core were found versatile and interesting with many biological activities. In the discovery of novel anticancer agents, the Quinazoline core is very effective. The FDA has approved more than 20 drugs as an anticancer bearing quinazoline or quinazolinone core in the last two decades. One prime example is Dacomitinib, which was newly approved for non-small-cell lung carcinoma treatment in 2018. These drugs work by different pathways to prevent the spread of cancer cell progression, including inhibition of different kinases, tubulin, kinesin spindle protein, and so forth. This review presented recent developments of quinazoline/quinazolinone scaffold bearing derivatives as anticancer agents acting as epidermal growth factor receptor (EGFR) vascular endothelial growth factor receptor (VEGFR), and dual EGFR/VEGFR inhibitors.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Receptores ErbB , Neoplasias Pulmonares , Receptores de Fatores de Crescimento do Endotélio Vascular , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/antagonistas & inibidores , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Quinazolinonas/farmacologia , Quinazolinonas/uso terapêutico , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Relação Estrutura-Atividade , Fator A de Crescimento do Endotélio Vascular
19.
CNS Neurol Disord Drug Targets ; 21(10): 926-939, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34348636

RESUMO

Pyrimidine is an aromatic and heterocyclic organic compound containing a 6-membered ring consisting of four carbon and two nitrogen atoms on alternative positions. Pyrimidine scaffolds described their existence in the medicinal chemist's cause for their synthesizing practicability and nonpoisonous nature. However, the reason behind neurological disorders is still an open challenge for scientific research and development organizations. Efficacy voids are widespread before researchers, despite high throughput research in the field of anti-Alzheimer's drugs.Researchers have constantly investigated all the probabilities for restraining the unwanted adverse effects of the anti-Alzheimer's agents and are focusing more extensively to rehabilitate neurological disorders. The scientific literature on drug development has been an aspiration to medicinal chemists and other researchers to facilitate further research. Therefore, this review emphasizes the structure-activity relationship (SAR) based approach and the pharmacological advancements of pyrimidine moiety in the new era of therapeutics as anti-Alzheimer's agents.


Assuntos
Anti-Hipertensivos , Pirimidinas , Pirimidinas/química , Pirimidinas/farmacologia , Relação Estrutura-Atividade
20.
CNS Neurol Disord Drug Targets ; 21(10): 940-951, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34080970

RESUMO

As a source of therapeutic agents, heterocyclic nitrogen-containing compounds and their derivatives are still interesting and essential. Pyrazole, a five-member heteroaromatic ring with two nitrogen atoms, has a major impact in chemical industries as well as pharmaceutical industries. Due to its wide range of biological activities against various diseases, it has been identified as a biologically important heterocyclic scaffold. The treatment of neurological disorders has always been a difficult task in both the past and present. Therefore, identifying therapeutically effective molecules for neurological conditions remains an open challenge in biomedical research and development. For developing novel entities as neuroprotective agents, recently, pyrazole scaffold has attracted medicinal chemists worldwide. The major focus of research in this area is discovering novel molecules as neuroprotective agents with minimal adverse effects and better effectiveness in improving the neurological condition. This review mainly covers recent developments in the neuropharmacological role of pyrazole incorporated compounds, including their structural-activity relationship (SAR), which also further includes IC50 values (in mM as well as in µM), recent patents, and a brief history as neuroprotective agents.


Assuntos
Antineoplásicos , Fármacos Neuroprotetores , Antineoplásicos/farmacologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Nitrogênio , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA