Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(23): 34381-34395, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38703316

RESUMO

The present study explores the use of periphyton to ameliorate toxic properties of arsenic (As) to Labeo rohita and also assesses the human food safety aspects. Fish were introduced to arsenite [As(III)] contaminated water (0.3 and 3 mg/L) along with periphyton. Biochemical, physiological and immunological parameters, including gene expression, were assessed after 30 days of exposure. Periphyton incorporation significantly improved (p < 0.05) the adverse effects of As on respiration, NH3 excretion and brain AChE activity by reducing oxidative stress and As bioaccumulation. The presence of periphyton in As(III) exposed fish (3 mg/L) increased the immune response (Immunoglobulin M and Complement C3) in the serum and the regulation of the respective immune genes in the anterior kidney was found to be similar to the control. A speciation study using LC-ICP-MS confirmed the high accumulation of As by periphyton (5.0-31.9 µg/g) as arsenate [As (V)], resulting in a lower amount of As in fish muscle. The calculated human health risk indices, Target Hazard Quotient (THQ) and Target Cancer risk (TCR) indicate that fish grown in periphyton-treated water may lower the human health risks associated with As. The study signifies the importance of periphyton-based aquaculture systems in As contaminated regions for safe fish production with enhanced yield.


Assuntos
Arsênio , Bioacumulação , Cyprinidae , Estresse Oxidativo , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Medição de Risco , Cyprinidae/imunologia , Peixes
2.
Environ Sci Pollut Res Int ; 30(60): 126178-126194, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38008832

RESUMO

Arsenic (As) is a toxic environmental contaminant with global public health concern. In aquatic ecosystems, the quantification of total As is restricted chiefly to the individual organisms. The present study has quantified the total As in different trophic layers (sediment-water-phytoplankton-periphyton-zooplankton-fish-gastropod-hydrophytes) of lentic freshwater ecosystems. As transfer pathways quantifying the transmission rate across trophic-level compartmental route were delineated using a novel model-based approach along with its potential contamination risk to humans. Lentic water bodies from Indo-Gangetic region, a core area of groundwater As, were selected for the present investigation. The study revealed that among the lower biota, zooplankton were the highest accumulator of total As (5554-11,564 µg kg-1) with magnification (rate = 1.129) of the metalloid, followed by phytoplankton (2579-6865 µg kg-1) and periphytic biofilm (1075 to 4382 µg kg -1). Muscle tissue of zooplanktivore Labeo catla is found to store higher As (80-115 µg kg-1 w.w.) compared to bottom-dwelling omnivore Cirrhinus mrigala (58-92 µg kg-1 w.w.). Whereas, Amblypharyngodon mola has accumulated higher As (203-319 µg kg-1 w.w.) than Puntius sophore (30-98 µg kg-1 w.w.) that raised further concern. The hepatic concentration indicated arsenic-mediated stress based on As stress index (threshold value = 1). Mrigal and Mola showed significant biomagnification among fishes while biodiminution was observed in Catla, Bata, Rohu and Punti. All the studied fishes were under the arsenic mediated stress. In the 'sediment-water-periphytic biofilm-gastropod' compartment, the direct grazing accumulation was higher (rate = 0.618) than the indirect path (rate = 0.587). Stems of edible freshwater macrophytes accumulated lesser As (32-190 µg kg-1 d.w.) than roots (292-946 µg kg-1 d.w.) and leaves (62-231 µg kg-1 d.w.). The target cancer risk (TCR) revealed a greater concern for adults consuming edible macrophyte regularly. Similarly, the varied level of target hazard quotient and TCR for adults consuming fishes from these waterbodies further speculated significant health concerns. The trophic transfer rate of environmental As in soil-water-biota level at an increasing trophic guild and consumer risk analysis have been unravelled for the first time in the Indo-Gangetic plains, which will be helpful for the strategic mitigation of As contamination.


Assuntos
Arsênio , Poluentes Químicos da Água , Animais , Humanos , Arsênio/análise , Ecossistema , Cadeia Alimentar , Água Doce , Peixes/metabolismo , Zooplâncton , Fitoplâncton , Água/análise , Receptores de Antígenos de Linfócitos T/metabolismo , Poluentes Químicos da Água/análise , Monitoramento Ambiental
3.
Environ Pollut ; 336: 122428, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37611791

RESUMO

Growing human population and climate change are leading reasons for water quality deterioration globally; and ecologically important waterbodies including freshwater wetlands are in a vulnerable state due to increasing concentrations of pollutants like heavy metals. Given the declining health of these valuable resources, the present study was conducted to evaluate the effect of natural floating island in the form of fish aggregating devices (FADs) made of native weed mass on the distribution of heavy metals in the abiotic and bio compartments of a freshwater wetland. Lower concentrations of surface water heavy metals were observed inside the FADs with a reduction of 73.91%, 65.22% and 40.57-49.16% for Cd, Pb and other metals (viz. Co, Cr, Cu, Ni and Zn), respectively as compared to outside FAD. These led to 14.72-55.39% reduction in the heavy metal pollution indices inside the FAD surface water. The fish species inside the FADs were also found less contaminated (24.07-25.07% reduction) with lower health risk indices. The study signifies the valuable contribution of natural floating island as FADs in ameliorating the effect of heavy metals pollution emphasizing the tremendous role of the natural floating islands in sustainable maintenance of freshwater wetlands for better human health and livelihood.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Animais , Humanos , Áreas Alagadas , Sedimentos Geológicos , Monitoramento Ambiental , Metais Pesados/análise , Água Doce , Medição de Risco , Poluentes Químicos da Água/análise , China
4.
Environ Sci Pollut Res Int ; 30(35): 83341-83355, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37340160

RESUMO

Rivers get polluted with diverse types of hazardous and toxic substances, pesticides being one of them. The water and sediment of rivers get contaminated with pesticide residues coming through the run-off of vast agricultural fields along the catchment area and also from domestic sewage water. The residues get bio-concentrated and bio-accumulated in different aquatic organisms and animals including fishes along the food chain. Fish, one of the important and chief sources of proteins, are consumed by humans. The presence of toxic substances like pesticides in any food item is undesirable for the fear of health hazards. We have monitored the status of pesticide residue in river Gomti, a tributary of River Ganga that passes through the Uttar Pradesh state of India. Water, sediment, and fish samples collected from the different locations along the river stretch were analyzed for 34 targeted pesticide compounds belonging to organochlorines (OC), organophosphates (OP), and synthetic pyrethroids (SP) groups. In 52% of water, 30% of sediment, and 43% of fish samples residues of OCs were detected while the OPs were present in 33%, 25%, and 39% of samples respectively. However, none of the SPs could be recorded in any sample. The concentrations of the pesticides in water indicate stress conditions to some extent to aquatic life, but based on the human health risk assessment it can be concluded that consumption of fishes from the river contaminated with different OC or OP residues would not pose any direct risk to the consumers.


Assuntos
Hidrocarbonetos Clorados , Resíduos de Praguicidas , Praguicidas , Poluentes Químicos da Água , Animais , Humanos , Resíduos de Praguicidas/análise , Rios/química , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Praguicidas/análise , Hidrocarbonetos Clorados/análise , Peixes/metabolismo , Água , Índia , Medição de Risco
5.
Environ Manage ; 71(5): 1037-1051, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36609869

RESUMO

The zooplankton community is a widely used bioindicator for the biological assessment of riverine aquatic ecosystems. Phyto-zooplankton interaction and spatially varying river environment parameters perceivably govern their spatial distribution in a large river. This invites the challenge of predicting zooplankton abundance along the river channel. The present article has proposed a geostatistical framework to predict zooplankton abundance along the river course while decoupling phyto-zooplankton relationship from spatial dependency. The strength of secondary data on the river Narmada-a large tropical river in India-has been utilised to accomplish the goal. The nonlinear logistic regression kriging has been found to be the most effective framework. The phyto-zooplankton relationship captured 66% of zooplankton variability, having moderate (37%) residual spatial dependence. The results have shown longitudinally fluctuating spatial variability, which supports the river serial discontinuity concept. The proposed framework has generated smooth zooplankton abundance and sustainability predictive maps that have allowed detection of the change point locations of zooplankton abundance. The map has precisely identified the most productive zone of zooplankton sustainability. The study also has appraised obtaining approximate data in the areas where sampling is infeasible, which will be helpful for location-specific management strategies on a lower spatial scale.


Assuntos
Rios , Zooplâncton , Animais , Ecossistema , Estações do Ano , Índia
6.
Sci Total Environ ; 807(Pt 3): 150995, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34666095

RESUMO

Biodiesel production from microalgae has gained significant interest recently due to the growing energy demand and non-renewable nature of petroleum. However, high cost of production and environmental health related issues like excess use of inorganic fertilizers, eutrophication are the major constraints in commercial-scale biodiesel production. Besides this, solid wastes (garden-based) management is also a global concern. In the present study, to overcome these limitations vermicompost extract was tested as nutrient source to enhance growth performance and lipid production from a freshwater microalga (Graesiella emersonii MN877773). Garden wastes were first converted into vermicompost manure and its extract (aerobic and anaerobically digested) was prepared. The efficacy of the extract was then tested in combination with BG11 medium. The mixotrophic cultivation of microalgae in anaerobically digested vermicompost extract at 50:50 combination with BG11 medium enhanced the cell biomass (0.64 g d. wt. L-1) and lipid productivity (3.18 mg L-1 day-1) of microalgae by two times. Moreover, the combination also improved the saturated (methyl palmitate) and monounsaturated fatty acids (oleic acid) content in the test algae. The quality of biodiesel also complies with all the properties of biodiesel standard provided by India, the USA, and Europe except the cold filter plugging property. The combination was also found to improve the cell biomass (0.041 g L-1) as compared to BG11 medium in mass-scale cultivation. Hence, the study proved that G. emersonii grown in media supplemented with garden waste-based vermicompost extract had significant potential for mass-scale biodiesel and bioproduct production.


Assuntos
Clorófitas , Microalgas , Biocombustíveis , Biomassa , Jardins
7.
Front Microbiol ; 12: 643945, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335488

RESUMO

The ultimate role of prokaryote (bacteria and archaea), the decomposer of the wetland ecosystem, depends on its community structure and its interaction with the environment. The present study has used three universal prokaryote primers to compare prokaryote community structure and diversity of three distinctly different wetlands. The study results revealed that α-diversity indices and phylogenetic differential abundance patterns did not differ significantly among primers, but they did differ significantly across wetlands. Microbial community composition revealed a distinct pattern for each primer in each wetland. Overall comparison of prokaryote communities in sediments of three wetlands revealed the highest prokaryote richness and diversity in Bhomra (freshwater wetland) followed by Malencho (brackish-water wetland) and East Kolkata wetland (EKW) (sewage-fed wetland). Indicator genus analysis identified 21, 4, and 29 unique indicator genera, having preferential abode for Bhomra, EKW, and Malencho, respectively. Prediction of potential roles of these microbes revealed a preference for sulfate-reducing microbes in Malencho and methanogens in Bhomra. The distinct phylogenetic differential abundance pattern, microbial abode preference, and their potential functional role predict ecosystem variables shaping microbial diversity. The variation in community composition of prokaryotes in response to ecosystem variables can serve as the most sensitive bioindicator of wetland ecosystem assessment and management.

8.
J Environ Manage ; 296: 113227, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34261034

RESUMO

The adverse effect of barge movement on the river's aquatic ecosystem is of global concern. The phytoplankton community, a bioindicator, is possibly the foremost victim of the barge movement. This study hypothesized phytoplankton diversity loss induced by barge movement in a large river. This article presents a novel risk assessment framework to evaluate the hypothesis-with a goal to uncoupling phytoplankton diversity loss due to barge movement over a spatiotemporal scale. For this purpose, a study was conducted in the Bhagirathi-Hooghly stretch of Inland National Waterway 1 of India. This study has proposed a new index of diversity loss and its inferential framework based on full Bayesian Generalized Linear Mixed Model. The results have diagnosed significant barge-induced impact on the phytoplankton diversity and identified ten most impacted species. The proposed framework has successfully disentangled barge-induced phytoplankton diversity loss from the biological process and predicted a substantive overall risk of phytoplankton loss of 31.44%. Besides, it has uncoupled spatiotemporal differential estimates, suggesting a risk of diversity loss in order of 'During vs After' (38.0%) > 'Before vs After' (30.7%) > 'Before vs During' (24%) barge movement in temporal scale and increasing diversity loss along downstream. Finally, the instant study has highlighted the utility of these results to facilitate better water framework directive for inland waterways.


Assuntos
Ecossistema , Fitoplâncton , Teorema de Bayes , Biodiversidade , Rios
9.
J Hazard Mater ; 413: 125347, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33601144

RESUMO

Microplastics are recognized as ubiquitous pollutants in aquatic environments; however, very little study is done on their occurrence and fate at drinking water treatment plants (DWTPs). Though, the toxic effect of microplastics on human health is not yet well established; there is global concern about their possible ill effect on the human. Hence, the present study evaluates the occurrence of microplastics at different treatment stages of a typical DWTP with pulse clarification and its removal efficiency. In the test DWTP, raw water, sourced from river Ganga, was found to contain microplastics 17.88 items/L. Cumulative microplastic removal at key treatment stages viz. pulse clarification and sand filtration was found to be 63% and 85%, respectively. The study also revealed higher microplastic abundance on the sand filter bed due to the screening effect. The most frequently occurring microplastics were fibers and films/fragments with polyethylene terephthalate and polyethylene as a major chemical type. The t-distributed stochastic neighbor embedding machine learning algorithm revealed a strong association between microplastic abundance with turbidity, phosphate and nitrate. The test DWTP with a pulse clarification system was having comparable microplastics removal efficiency with previously reported advanced DWTPs.


Assuntos
Água Potável , Poluentes Químicos da Água , Monitoramento Ambiental , Humanos , Microplásticos , Plásticos , Poluentes Químicos da Água/análise
10.
Water Res ; 192: 116853, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33513468

RESUMO

Microplastics pollution in aquatic ecosystems is of great concern; however, systemic investigations are still lacking in freshwater wetland systems used for wastewater treatment. The present study discusses such freshwater wetland system in Eastern India to understand its microplastics transport mechanism, heavy metals association and microplastics removal efficiency. Microplastics (63 µm - 5 mm) were heavily found in surface water and sediments of treatment ponds (7.87 to 20.39 items/L and 2124.84 to 6886.76 items/kg) and associated wastewater canals (30.46 to 137.72 items/L and 1108.78 to 34612.87 items/kg). A high content of toxic metals (As, Cd, Cr, Cu, Ni, Pb and Zn) were found on the microplastics with polyethylene terephthalate and polyethylene as major plastics types which were also found in fishes and macroinvertebrates of treatment ponds. Machine learning algorithm revealed a close association between microplastics content in fishes and surface water, indicating risk associated with floating microplastics to the aquatic biota. The study also revealed that microplastics were acting as heavy metals vector and potentially causing fish contamination. Surface water microplastics removing efficiency of the treatment ponds was estimated to be 53%. The study bespeaks about transport of microplastics through wastewater canals and their retention in treatment ponds emphasizing sustainability maintenance of natural wastewater treatment systems especially considering microplastics contamination to the aquatic biota of freshwater wetland systems.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Purificação da Água , Animais , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos , Índia , Metais Pesados/análise , Microplásticos , Plásticos , Poluentes Químicos da Água/análise , Áreas Alagadas
11.
Arch Environ Contam Toxicol ; 79(4): 488-499, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33215293

RESUMO

Personal care product (PCP) chemicals have a greater chance of accumulation in the aquatic environments because of their volume of use. PCPs are biologically active substances that can exert an adverse effect on the ecology and food safety. Information on the status of these substances in Indian open water ecosystems is scarce. In this paper, we report the incidence of two synthetic antimicrobials, triclosan (TCS), including its metabolite methyl-triclosan (Me-TCS) and triclocarban (TCC) in Torsa, a transboundary river flowing through India. In water TCS and TCC were detected at levels exceeding their respective PNEC (Predictive No Effect Concentration). Both the compounds were found to be bioaccumulative in fish. TCS concentration (91.1-589 µg/kg) in fish was higher than that of TCC (29.1-285.5 µg/kg). The accumulation of residues of the biocides varied widely among fishes of different species, ecological niche, and feeding habits. Me-TCS could be detected in fishes and not in water. The environmental hazard quotient of both TCS and TCC in water indicated a moderate risk. However, the health risk analysis revealed that fishes of the river would not pose any direct hazard to human when consumed. This is the first report of the occurrence of these PCP chemicals in a torrential river system of the eastern Himalayan region.


Assuntos
Anti-Infecciosos/análise , Carbanilidas/análise , Monitoramento Ambiental , Triclosan/análogos & derivados , Poluentes Químicos da Água/análise , Animais , Desinfetantes , Ecossistema , Peixes , Humanos , Índia , Rios/química , Segurança , Triclosan/análise , Água/análise
12.
Environ Monit Assess ; 192(3): 183, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32072310

RESUMO

The floodplain wetlands in different regional settings vary with time and space in terms of function and geomorphological diversity. In recent decades, these eco-sensitive waterbodies have been exposed to a wide range of anthropogenic threats and climatic changes. Therefore, assessment of these ecological and environmental threats is prerequisite to understand the state of ecosystem and to develop a sustainable management strategy for conservation of wetland biodiversity and fisheries enhancement. This paper discusses the region-specific pattern of trophic state index (TSI) of the 27 floodplain wetlands in West Bengal, India. Carlson TSI and Lamparelli TSI methods were used to determine a better approach based on historical and continuous dataset and to delineate the interrelationship among historical climatic variability for sustainable management of the resources. The study revealed that agro-climatic divisions do not unveil any significant impact on the TSI calculated using Carlson TSI as well as Lamparelli TSI method. The TSI scores for the two methods were significantly different (p < 0.01) for different zones based on wetland habitat types. The TSI scores revealed most of the wetlands to be in mesotrophic state. Principal component analysis (PCA) indicated that TSI scores were having similar pattern of variation with rainfall and water temperature. The present study also conveys fundamental information on ecological status based on the trophic state, which will aid to develop region-specific strategies for sustainable fisheries enhancement.


Assuntos
Mudança Climática , Eutrofização , Áreas Alagadas , Ecossistema , Monitoramento Ambiental , Índia
13.
Artigo em Inglês | MEDLINE | ID: mdl-31960780

RESUMO

Studies on Sisorinae systematics have been largely restricted to morphological data with few studies on examination of phylogenetic relations. However, no study has been done to evaluate genetic distance of the genera under Sisorinae sub-family and detailed phylogenetic relations within it. We used nuclear recombination activating 2 (rag2) gene and mitochondrial cytochrome c oxidase I (COI) gene from 64 species to examine genetic differentiation and phylogenetic relationships within 11 Asian Sisorinae genera. The range of interspecies K2P distance for rag2 was 0-0.061 and COI was 0-0.204. Phylogenetic analysis based on maximum likelihood (ML) and Bayesian (BI) approaches for each locus individually and for the concatenated rag2 and COI sequences revealed three major subclades viz. Bagariini, Sisorini and Erethistini under subfamily Sisorinae. The analysis based on COI gene showed ((Sisorini, Bagariini), Erethistini) relationship. Rag2 and combined rag2 and COI showed ((Sisorini, Erethistini), Bagariini) relationship. Combined rag2 and COI analyses resulted into better resolved trees with a good bootstrap support. In this study, new record of Pseudolaguvia foveolata (Erethistini) has been documented based on 13 specimens collected from Torsa River, Jaldapara, Alipurduar district, West Bengal, India (26°43'44.66″ N and 89°19'32.34″ E), extending its distribution range in Brahmaputra drainage, India. The genetic distance between the P. foveolata new record and the reported P. foveolata (holotype: UMMZ 244867) was 0.00 at both rag2 and COI locus and it was further grouped with P. foveolata Type specimen (holotype: UMMZ 244867) with 100% bootstrap support. This report gives additional information on occurrence of the species P. foveolata, along with discussion on morphometric, meristic and molecular (COI and rag2 gene) data.


Assuntos
Peixes-Gato/genética , Proteínas de Ligação a DNA/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Genes Mitocondriais/genética , Genoma Mitocondrial/genética , Mitocôndrias/genética , Animais , Peixes-Gato/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Índia , Mitocôndrias/metabolismo , Filogenia
14.
PLoS One ; 14(9): e0221451, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31483812

RESUMO

Impact of barge movement on phytoplankton abundance and biomass was assessed in the lower stretch of river Ganga, popularly known as Bhagirathi-Hooghly river, during April 2016 to March, 2017. Based on the magnitude of tide, intensity of shipping and boating activities, the stretch from Baranagar to Lalbag (278 km), located at latitude (22°38'33.41"N to 24°10'59.75"N) and longitude (88°21'21.29"E to 88°16'5.65"E) was divided into three zones viz. zone-I (Baranagar to Barrackpore), zone II (Triveni to Balagarh) and zone III (Nabadweep to Lalbag). Water samples were collected randomly from six stations covering 22 barge movements at their passage at three different time intervals viz., 30 minutes before 'barge movement', during 'barge movement' and 30 minutes after 'barge movement'. Analysis revealed the presence of 52 phytoplankton taxa belonged to 5 phylum during the study period. The abundance of phytoplankton was highest in zone-I followed by zone III and the zone II. A 44% decrease (1,997 ±1,510 ul-1) in phytoplankton abundance was observed during 'barge movement' with respect to normal condition (3,513 ± 2,239 ul-1) which could be due to propeller turbulence in the passage. Cell damage study revealed 21% damage in phytoplankton cell structure in 'during barge' followed by 'after barge' (10%) condition compared to natural state (6%). Study revealed that phytoplankton biomass (Chlorophyll a) was influenced by 'barge movement' in the sampling stretches and the impact was assessed by one way ANOVA. The effect was found significant at Barrackpore (p <0.01), Triveni (p <0.01), Balagarh (p <0.01) and Lalbag (p <0.01) where as it was insignificant at Baranagar and Nabadweep, which may be due to continuous and existing boat trafficking at Baranagar and Nabadweep. Two way ANOVA computed using 'barge movement' and sampling stations showed significant (p<0.01) effect on magnitude of Chl a concentrations in the sampling locations. Thus, the 'barge movement' influenced phytoplankton abundance and biomass, it had a detrimental effect on phytoplankton cell architecture also. The data set of this work serves as foundation information to understand the ecological implications augmented barge induced environmental disturbances in waterways. This is the first such study which depicts the impact of 'barge movement' on aquatic food chain linkages in Bhagirathi- Hooghly river.


Assuntos
Clorofila A/análise , Fitoplâncton/metabolismo , Rios/química , Biodiversidade , Biomassa , Monitoramento Ambiental , Índia , Microalgas/química , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Fitoplâncton/química , Fitoplâncton/crescimento & desenvolvimento , Navios
15.
Sci Total Environ ; 694: 133712, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31400677

RESUMO

Small plastic debris is one of the most significant emerging pollutants, due to their extreme durability and synthetic nature, possessing a tremendous threat to the aquatic environment. In the present study, sediments of river Ganga at a lower stretch were analyzed for distribution of meso and microplastics at seven different locations viz. Buxar, Patna, Bhagalpur, Nabadwip, Barrackpore, Godakhali and Fraserganj. All the sediments were found to contain mesoplastics (>5 mm) and microplastics (<5 mm) particles with varying degree of the mass fraction (11.48 to 63.79 ng/g sediments), numerical abundance (99.27-409.86 items/kg) and morphotypes. Analysis of the mesoplastics with FT-IR revealed polyethylene terepthalate (39%) as the major contributing plastic debris in the sediments followed by polyethylene (30%). Statistical analysis revealed a strong correlation between microplastics abundance and the pollution traits, BOD and available phosphate, of water and sediment, respectively. This study exhibits the spatial distribution of meso and microplastics in the highly populated locations along the river Ganga emphasizing the attention to be given to this emerging pollutant in the inland river system underlining their role as a transporter of plastic fragments finally to the ocean.

16.
Int J Biometeorol ; 63(8): 991-1004, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31175418

RESUMO

The main objectives of the present study were to quantify the environmental, especially temperature and rainfall, effects on breeding phenology of selected catfish species and to predict changes in breeding phenology of the selected species in relation to climatic variability for the Ganga River Basin. The study showed that changes in rainfall pattern may have the most profound effect on gonad maturation and breeding of Mystus tengara and Mystus cavasius followed by the effect of increased water temperature due to rising air temperature. Indication of region-specific adaptation was noticed in reproductive phenology of Eutropiichthys vacha based on local trends of warming climate. The other habitat parameters, such as dissolved oxygen, alkalinity, nitrate, and phosphate, were correlated with gonad maturity and spawning. Climatic variability may bring region-specific changes in breeding phenology of fish species in the Ganga River. Under a warming climate, changes in precipitation pattern manifested into riverine flow pulse may be the key driver in dictating breeding phenology. Our study indicates E. vacha as a climate sensitive species that may be selected as a target species for climate change impact studies.


Assuntos
Peixes-Gato , Rios , Animais , Cruzamento , Mudança Climática , Ecossistema , Estações do Ano , Temperatura
17.
Int J Environ Health Res ; 28(5): 461-470, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29925273

RESUMO

Triclosan (TCS), the antibacterial agent commonly used in personal care products is highly toxic to aquatic lives particularly algae, zooplankton and fish. It is bio-accumulative and has endocrine disruptive properties. In this present study, we monitored the occurrence of TCS in water, sediment and fish samples collected from stretch of about 450 km of River Gomti, a major tributary of River Ganga, in India. An isocratic reversed-phase HPLC method was standardized for determination of TCS in samples. In water, TCS was detected in the range of 1.1-9.65 µg/l while in sediments the level was 5.11-50.36 µg/kg. It was also found in fishes of different species in concentrations ranging from 13 to 1040 µg/kg on wet weight basis. However, estimated daily intake of TCS through contaminated fish was much below the acceptable daily intake (50 µg/kg body wt/day) and thus safe from human health hazard point of view.


Assuntos
Peixes , Sedimentos Geológicos/análise , Triclosan/análise , Poluentes Químicos da Água/análise , Animais , Anti-Infecciosos Locais/análise , Exposição Dietética/análise , Monitoramento Ambiental/métodos , Produtos Pesqueiros/análise , Contaminação de Alimentos/análise , Índia , Medição de Risco/métodos , Rios/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA