Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Knee Surg Sports Traumatol Arthrosc ; 32(3): 636-644, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38391111

RESUMO

PURPOSE: Viable cartilage allograft (VCA) is a cartilage tissue matrix that contains cryopreserved viable allogeneic cartilage fibres. This study aimed to assess safety and benefits in treating focal knee cartilage defects with VCA. We hypothesized that VCA is a safe single-stage procedure in isolated chondral defects. METHOD: In vitro analysis, in vivo studies and a prospective case series were performed. VCA was evaluated in a goat cartilage repair model. Symptomatic International Cartilage Repair Society grade 3/4A lesions of the femoral condyle or patella were implanted with VCA. International Knee Documentation Committee (IKDC), Knee injury and Osteoarthritis Outcome (KOOS) subscales, Lysholm, Short Form-12, Visual Analog Scale and pain frequency levels were assessed. Radiographic and magnetic resonance imaging (MRI) was performed at regular intervals postoperatively. Data were analysed by statisticians to determine the power and significance of the results. RESULTS: The goat study confirmed that VCA is effective for cartilage repair. Twenty patients were implanted; the mean age was 28.1 (16-56), the mean body mass index (BMI) was 27.9 ± 5.6 and the mean follow-up was 24.1 months (range = 12.0-36.0 months). Lesions were in either the femoral condyle (7) or patella (13). Lesion sizes ranged from 1.5 to 6.0 cm2 (mean = 4.58 cm2 ). Outcome scores improved from preoperative baseline (POB): IKDC (78.2), Lysholm (89.0), KOOS: Pain (95.8), Symptoms (86.3), ADL (87.8), Sports (85.0) and QOL (75.0). MRI imaging demonstrated excellent osteochondral allograft assimilation. Second-look arthroscopy (two patients) demonstrated complete fill and incorporation (Brittberg scores 11/12). Functional scores were maintained at 24 (M): IKDC (86.24 ± 17.2), Lysholm (87.23 ± 15.0), KOOS: Pain (91.72 ± 17.3), Symptoms (84.92 ± 16.1), ADLs (93.80 ± 16.1), Sports (84.45 ± 27.7), QOL (81.30 ± 20.8). CONCLUSION: VCA is an off-the-shelf, single-stage, conformable allogeneic graft that treats chondral defects with no additional fixation. Preclinical and short-term prospective clinical studies show that VCA can safely treat chondral defects with potential advantages to existing options. LEVEL OF EVIDENCE: Level IV study.


Assuntos
Doenças das Cartilagens , Cartilagem Articular , Traumatismos do Joelho , Osteoartrite do Joelho , Humanos , Animais , Adulto , Cartilagem Articular/cirurgia , Qualidade de Vida , Resultado do Tratamento , Articulação do Joelho/cirurgia , Doenças das Cartilagens/patologia , Imageamento por Ressonância Magnética , Osteoartrite do Joelho/patologia , Traumatismos do Joelho/cirurgia , Aloenxertos , Dor/patologia , Cabras , Seguimentos
2.
Int J Spine Surg ; 14(2): 213-221, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32355628

RESUMO

BACKGROUND: To evaluate the comparative abilities of commercially available, viable, cellular bone allografts to promote posterolateral spinal fusion. METHODS: Human allografts containing live cells were implanted in the athymic rat model of posterolateral spine fusion. Three commercially available allogeneic cellular bone matrices (Trinity Evolution, Trinity ELITE and Osteocel Plus) were compared with syngeneic iliac crest bone as the control. All spines underwent radiographs, manual palpation, and micro-computed tomography (CT) analysis after excision at 6 weeks. Histological sections of randomly selected spines were subjected to semiquantitative histopathological scoring for bone formation. RESULTS: By manual palpation, posterolateral fusion was detected in 40% (6/15) of spines implanted with syngeneic bone, whereas spines implanted with Trinity Evolution and Trinity ELITE allografts yielded 71% (10/14) and 77% (10/13) fusion, respectively. Only 7% (1/14) of spines implanted with Osteocel Plus allografts were judged fused by manual palpation (statistically significantly less than ELITE, P < .0007, and Evolution, P < .0013). The mineralized cancellous bone component of the allografts confounded radiographic analysis, but Trinity Evolution (0.452 ± 0.064) and Trinity ELITE (0.536 ± 0.109) allografts produced statistically significantly higher bone fusion mass volumes measured by quantitative micro-CT than did syngeneic bone (0.292 ± 0.109, P < .0001 for ELITE and P < .003 for Evolution) and Osteocel Plus (0.258 ± 0.103, P < .0001). Semiquantitative histopathological scores supported these findings because the total bone and bone marrow scores reflected significantly better new bone and marrow formation in the Trinity groups than in the Osteocel Plus group. CONCLUSIONS: The Trinity Evolution and Trinity ELITE cellular bone allografts were more effective at creating posterolateral fusion than either the Osteocel Plus allografts or syngeneic bone in this animal model. CLINICAL RELEVANCE: The superior fusion rate of Trinity cellular bone allografts may lead to better clinical outcome of spinal fusion surgeries.

3.
Plast Reconstr Surg Glob Open ; 4(10): e1065, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27826469

RESUMO

BACKGROUND: Acellular dermal matrices (ADMs) are frequently used in reconstructive surgery and as scaffolds to treat chronic wounds. The 3-dimensional architecture and extracellular matrix provide structural and signaling cues for repair and remodeling. However, most ADMs are not uniformly porous, which can lead to heterogeneous host engraftment. In this study, we hypothesized that a novel human reticular ADM (HR-ADM; AlloPatch Pliable, Musculoskeletal Transplant Foundation, Edison, N.J.) when aseptically processed would have a more open uniform structure with retention of biological components known to facilitate wound healing. METHODS: The reticular and papillary layers were compared through histology and scanning electron microscopy. Biomechanical properties were assessed through tensile testing. The impact of aseptic processing was evaluated by comparing unprocessed with processed reticular grafts. In vitro cell culture on fibroblasts and endothelial cells were performed to showcase functional cell activities on HR-ADMs. RESULTS: Aseptically processed HR-ADMs have an open, interconnected uniform scaffold with preserved collagens, elastin, glycosaminoglycans, and hyaluronic acid. HR-ADMs had significantly lower ultimate tensile strength and Young's modulus versus the papillary layer, with a higher percentage elongation at break, providing graft flexibility. These preserved biological components facilitated fibroblast and endothelial cell attachment, cell infiltration, and new matrix synthesis (collagen IV, fibronectin, von Willebrand factor), which support granulation and angiogenic activities. CONCLUSIONS: The novel HR-ADMs provide an open, interconnected scaffold with native dermal mechanical and biological properties. Furthermore, aseptic processing retains key extracellular matrix elements in an organized framework and supports functional activities of fibroblasts and endothelial cells.

4.
Aesthet Surg J ; 36(suppl 2): S7-S22, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27697888

RESUMO

BACKGROUND: The use of acellular dermal matrices (ADMs) has become the standard of practice in many reconstructive and aesthetic surgical applications. Different methods used to prepare the allograft tissue for surgical use can alter the ADMs natural properties. Aseptic processing has been shown to retain the natural properties of ADMs more favorably than terminally sterilized ADMs. Terminal sterilization has been historically linked to alteration of biological materials. In vitro work was conducted to compare ADM processing methods. OBJECTIVES: Characterize aseptically processed ADMs and compare cell-matrix interaction characteristics to terminally sterilized ADMs. METHODS: Two aseptically processed ADMs, FlexHD Pliable and BellaDerm, were characterized via histological evaluation, biomechanical integrity, enzymatic degradation, and in vitro cell studies. FlexHD Pliable was compared to Alloderm Ready-to-Use (RTU). RESULTS: Histological evaluation revealed that FlexHD Pliable had a uniform, open structure compared to BellaDerm. Mechanical characterization demonstrated that BellaDerm had higher strength and stiffness compared to FlexHD Pliable, which maintained higher elasticity. Immunohistochemical analysis verified that key matrix proteins remained intact after aseptic processing. Cell studies found that fibroblasts attached more readily, and proliferated faster on FlexHD Pliable compared to BellaDerm. Additionally, fibroblasts infiltrated into FlexHD Pliable from both sides and on the dermal side in BellaDerm and produced an abundance of multi-layered matrix proteins (collagen, fibronectin) when compared to AlloDerm RTU which was sparse. CONCLUSIONS: Aseptically processed FlexHD Pliable and BellaDerm provide a suitable, biocompatible option for tissue repair and regeneration in aesthetic and reconstructive surgical applications.


Assuntos
Derme Acelular , Colágeno , Procedimentos de Cirurgia Plástica/métodos , Fenômenos Biomecânicos , Proliferação de Células , Células Cultivadas , Descontaminação , Fibroblastos/fisiologia , Humanos , Mamoplastia/métodos , Esterilização
5.
Biotechnol Bioeng ; 101(6): 1332-43, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18571804

RESUMO

We examined the effects of co-cultivated hepatocytes on the hepatospecific differentiation of murine embryonic stem (ES) cells. Utilizing an established mouse ES cell line expressing high or low levels of E-cadherin, that we have previously shown to be responsive to hepatotrophic growth factor stimulation (Dasgupta et al., 2005. Biotechnol Bioeng 92(3):257-266), we compared co-cultures of cadherin-expressing ES (CE-ES) cells with cultured rat hepatocytes, allowing for either paracrine interactions (indirect co-cultures) or both juxtacrine and paracrine interactions (direct co-cultures, random and patterned). Hepatospecific differentiation of ES cells was evaluated in terms of hepatic-like cuboidal morphology, heightened gene expression of late maturation marker, glucose-6-phosphatase in relation to early marker, alpha-fetoprotein (AFP), and the intracellular localization of albumin. Hepatocytes co-cultured with growth factor primed CE-ES cells markedly enhanced ES cell differentiation toward the hepatic lineage, an effect that was reversed through E-cadherin blockage and inhibited in control ES cells with reduced cadherin expression. Comparison of single ES cell cultures versus co-cultures show that direct contact co-cultures of hepatocytes and CE-ES cells maximally promoted ES cell commitment towards hepatodifferentiation, suggesting cooperative effects of cadherin-based juxtacrine and paracrine interactions. In contrast, E-cadherin deficient mouse ES (CD-ES) cells co-cultured with hepatocytes failed to show increased G6P expression, confirming the role of E-cadherin expression. To establish whether albumin expression in CE-ES cells was spatially regulated by co-cultured hepatocytes, we co-cultivated CE-ES cells around micropatterned, pre-differentiated rat hepatocytes. Albumin localization was enhanced "globally" within CE-ES cell colonies and was inhibited through E-cadherin antibody blockage in all but an interfacial band of ES cells. Thus, stem cell based cadherin presentation may be an effective tool to induce hepatotrophic differentiation by leveraging both distal/paracrine and contact/juxtacrine interactions with primary cells of the liver.


Assuntos
Diferenciação Celular , Técnicas de Cocultura/métodos , Células-Tronco Embrionárias/citologia , Hepatócitos , Animais , Caderinas/biossíntese , Linhagem Celular , Células Cultivadas , Masculino , Camundongos , Ratos
6.
Biotechnol Bioeng ; 92(3): 257-66, 2005 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-16167333

RESUMO

Since effective cell sourcing is a major challenge for the therapeutic management of liver disease and liver failure, embryonic stem (ES) cells are being widely investigated as a promising source of hepatic-like cells with their proliferative and pluripotent capacities. Cell-cell interactions are crucial in embryonic development modulating adhesive and signaling functions; specifically, the cell-cell adhesion ligand, cadherin is instrumental in gastrulation and hepatic morphogenesis. Inspired by the role of cadherins in development, we investigated the role of expression of E-cadherin in cultured murine ES cells on the induction of hepatospecific phenotype and maturation. The cadherin-expressing embryonic stem (CE-ES) cells intrinsically formed pronounced cell aggregates and cuboidal morphology whereas cadherin-deficient cadherin-expressing embryonic stem (CD-ES) cells remained more spread out and corded in morphology. Through controlled stimulation with single or combined forms of hepatotrophic growth factors; hepatocyte growth factor (HGF), dexamethasone (DEX) and oncostatin M (OSM), we investigated the progressive maturation of CE-ES cells, in relation to the control, CD-ES cells. Upon growth factor treatment, the CE-ES cells adopted a more compacted morphology, which exhibited a significant hepatocyte-like cuboidal appearance in the presence of DEX-OSM-HGF. In contrast, the CD-ES cells exhibited a mixed morphology and appeared to be more elongated in the presence of DEX-OSM-HGF. Reverse-transcriptase polymerase chain reaction was used to delineate the most differentiating condition in terms of early (alpha-fetoprotein (AFP)), mid (albumin), and late-hepatic (glucose-6-phosphatase) markers in relation to growth factor presentation for both CE-ES and CD-ES cells. We report that following the most differentiating condition of DEX-OSM-HGF stimulation, CE-ES cells expressed increased levels of albumin and glucose-6-phosphatase, whereas the CD-ES cells showed low levels of AFP and marginal levels of albumin and glucose-6-phosphatase. These trends suggest that the membrane expression of E-cadherin in ES cells can elicit a marked response to growth factor stimulation and lead to the induction of later stages of hepatocytic maturation. Thus, cadherin-engineered ES cells could be used to harness the cross-talk between the hepatotrophic and cadherin-based signaling pathways for controlled acceleration of ES hepatodifferentiation.


Assuntos
Caderinas/metabolismo , Técnicas de Cultura de Células/métodos , Hepatócitos/citologia , Hepatócitos/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Engenharia Tecidual/métodos , Animais , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Camundongos , Fenótipo
7.
Tissue Eng ; 11(5-6): 734-50, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15998215

RESUMO

Although cadherin-mediated intercellular contacts can be integral to the maintenance of functionally competent hepatocytes in vitro, the ability to engineer hepatocellular differentiated function via acellular E-cadherin has yet to be thoroughly explored. To investigate the potential of substrate-presented, acellular E-cadherin to modulate hepatocellular self-assembly and functional fate, rat hepatocytes were cultured at sparse densities on surfaces designed to display recombinant E-cadherin/Fc chimeras. On these substrates, hepatocytes were observed to recognize microdisplayed E-cadherin/Fc and responded by modulating the spatial distribution of the intracellular cadherin-complexing protein beta-catenin. Substrate-presented E-cadherin/Fc was also found to markedly alter patterns of hepatocyte morphogenesis, as cellular spreading and two-dimensional reorganization were significantly inhibited under these conditions, leading to multicellular aggregates that were considerably more three-dimensional in nature. Increasing cadherin exposure was also associated with elevated levels of albumin and urea secretion, two markers of hepatocyte differentiation, over control cultures. This suggested that cell-substrate cadherin engagement established more functionally competent hepatocellular phenotypes, coinciding with the notion that E-cadherin is a differentiation-inducing ligand for these cells. The morphogenetic and function-promoting effects of substrate-bound E-cadherin/Fc were further enhanced under conditions in which protein A was utilized as an anchoring molecule to present cadherin molecules, suggesting that ligand mobility may play an important role in the effective establishment of cell-to-substrate cadherin interactions. Interestingly, the percent increase in function detected for conditions of high cadherin exposure versus control cultures was found to be substantially higher at extremely low cell densities. This observation indicated that hepatocytes respond to substrate-presented E-cadherin even in the absence of native intercellular interactions and associated juxtacrine signaling. The incorporation of acellular E-cadherin on biomaterial substrates may thus potentially present a means to prevent hepatocellular dedifferentiation by maintaining liver-specific function in otherwise severely functionally repressive culture conditions.


Assuntos
Caderinas , Diferenciação Celular , Hepatócitos/citologia , Engenharia Tecidual , Animais , Materiais Biocompatíveis , Técnicas de Cultura de Células , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Hepatócitos/fisiologia , Humanos , Fragmentos Fc das Imunoglobulinas , Ratos , Ratos Endogâmicos F344 , Fatores de Tempo
8.
Biotechnol Bioeng ; 89(3): 296-307, 2005 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-15744840

RESUMO

In order to evaluate the sensitivity of hepatocellular cultures to variations in both substrate stiffness and bioactive ligand presentation, hepatocytes were cultured on differentially compliant polyacrylamide gel discs functionalized with varying amounts of the ECM ligand, fibronectin (FN). Subconfluent cell cultures were established in a multiwell plate format enabling the systematic evaluation of cellular response to both underlying substrate rigidity and substrate ligand concentration. Hepatocellular morphogenesis, regulated by a combination of both ligand density and substrate compliance, resulted in a broad spectrum of patterns of cellular reorganization and assembly ranging from highly two-dimensionally spread cells to highly compact, three-dimensional spheroids. Cell compaction was promoted by increasing levels of substrate mechanical compliance and generally inhibited by increasing concentrations of substrate-bound FN. We identified regimes of substrate compliance in which cells are highly responsive or relatively insensitive to the level of substrate-based ligands. For example, while FN presentation did not have a large impact on cell morphogenesis for cultures on highly compliant gels (G' = 1.9 kPa), hepatocytes on "firm" substrates of intermediate compliance (G' = 5.6 kPa) exhibited approximately a 2-fold increase in cell area between the highest and lowest FN concentrations used in this study. Further, we show that increasing substrate compliance at constant ligand concentration results in increased levels of liver-specific albumin secretion while increasing levels of FN at constant substrate rigidity yield reduced liver-specific functional activity. These substrate-elicited differences in cell function also coincided with analogous changes in the transcript levels of metabolic, growth-related, and liver-specific gene markers. Notably, these results also demonstrated that "firm" gel substrates elicit the most hepatocyte functional sensitivity to substrate-based FN presentation. Overall, our findings indicate that hepatocellular responsiveness to ligand concentration can be acutely regulated by gradation of substrate compliance, suggesting that concerted biochemical and biophysical design strategies may be critical toward the fabrication of hepatospecific biomaterials that effectively support desired levels of liver-specific function.


Assuntos
Técnicas de Cultura de Células , Fibronectinas/farmacologia , Hepatócitos/citologia , Hidrogéis/química , Animais , Complacência (Medida de Distensibilidade) , Fibronectinas/química , Hepatócitos/efeitos dos fármacos , Hepatócitos/fisiologia , Ligantes , Fígado/crescimento & desenvolvimento , Masculino , Morfogênese , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA