Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 211: 108704, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38728836

RESUMO

Nanomaterials (NMs) have proven to be a game-changer in agriculture, showcasing their potential to boost plant growth and safeguarding crops. The agricultural sector has widely adopted NMs, benefiting from their small size, high surface area, and optical properties to augment crop productivity and provide protection against various stressors. This is attributed to their unique characteristics, contributing to their widespread use in agriculture. Human exposure from various components of agro-environmental sectors (soil, crops) NMs residues are likely to upsurge with exposure paths may stimulates bioaccumulation in food chain. With the aim to achieve sustainability, nanotechnology (NTs) do exhibit its potentials in various domains of agriculture also have its flip side too. In this review article we have opted a fusion approach using bibliometric based analysis of global research trend followed by a holistic assessment of pros and cons i.e. toxicological aspect too. Moreover, we have also tried to analyse the current scenario of policy associated with the application of NMs in agro-environment.

2.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37047052

RESUMO

Rice is an ideal crop for improvement of nitrogen use efficiency (NUE), especially with urea, its predominant fertilizer. There is a paucity of studies on rice genotypes contrasting for NUE. We compared low urea-responsive transcriptomes of contrasting rice genotypes, namely Nidhi (low NUE) and Panvel1 (high NUE). Transcriptomes of whole plants grown with media containing normal (15 mM) and low urea (1.5 mM) revealed 1497 and 2819 differentially expressed genes (DEGs) in Nidhi and Panvel1, respectively, of which 271 were common. Though 1226 DEGs were genotype-specific in Nidhi and 2548 in Panvel1, there was far higher commonality in underlying processes. High NUE is associated with the urea-responsive regulation of other nutrient transporters, miRNAs, transcription factors (TFs) and better photosynthesis, water use efficiency and post-translational modifications. Many of their genes co-localized to NUE-QTLs on chromosomes 1, 3 and 9. A field evaluation under different doses of urea revealed better agronomic performance including grain yield, transport/uptake efficiencies and NUE of Panvel1. Comparison of our urea-based transcriptomes with our previous nitrate-based transcriptomes revealed many common processes despite large differences in their expression profiles. Our model proposes that differential involvement of transporters and TFs, among others, contributes to better urea uptake, translocation, utilization, flower development and yield for high NUE.


Assuntos
Nitrogênio , Oryza , Nitrogênio/metabolismo , Oryza/genética , Oryza/metabolismo , Ureia/farmacologia , Ureia/metabolismo , Genótipo , Genoma
3.
Plants (Basel) ; 11(9)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35567271

RESUMO

Drought stress severely affects plant growth and development, causing significant yield loss in rice. This study demonstrates the relevance of water use efficiency with deeper rooting along with other root traits and gas exchange parameters. Forty-nine rice genotypes were evaluated in the basket method to examine leaf-level water use efficiency (WUEi) variation and its relation to root traits. Significant variation in WUEi was observed (from 2.29 to 7.39 µmol CO2 mmol−1 H2O) under drought stress. Regression analysis revealed that high WUEi was associated with higher biomass accumulation, low transpiration rate, and deep rooting ratio. The ratio of deep rooting was also associated with low internal CO2 concentration. The association of deep rooting with lower root number and root dry weight suggests that an ideal drought-tolerant genotype with higher water use efficiency should have deeper rooting (>30% RDR) with moderate root number and root dry weight to be sustained under drought for a longer period. The study also revealed that, under drought stress conditions, landraces are more water-use efficient with superior root traits than improved genotypes.

4.
Plant Sci ; 314: 111103, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34895540

RESUMO

Photorespiration accounts for 20-50 % reduction in grain yield in C3 crops. The process is essential to remove 2-phosphoglycolate produced due to the oxygenation activity of the ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO) enzyme. Attempts were made to improve photosynthesis through enriched CO2 concentration by installing numerous photorespiratory bypass modules in the chloroplast of several crops. In this study, we have introduced Escherichia coli glycolate catabolic pathway (ECGC) into rice chloroplast to bypass photorespiration partially (PB) or completely (FB). Five genes encoding glyoxylate carboligase (GCL), tartronic semialdehyde reductase (TSR), and three subunits of glycolate dehydrogenase (GDH) were introduced to get FB plants, whereas only the three subunits of GDH were introduced to get PB plants. Southern analysis confirmed stable integration of the transgenes and their expression was confirmed by RT-qPCR analysis in the T3 progenies. Both FB and PB transformed lines exhibited increased photosynthetic efficiency, biomass, and grain yield than wild type (WT) with empty vector control. The introduction of ECGC pathway favoured the carboxylase activity of RuBisCO while decreasing its oxygenase activity fostering the functioning of Calvin-Benson cycle and resulting in an increased carbon-assimilation that was manifested in their superior architecture and harvest index. These findings will support rice and related cereal crop breeding programs to increase yield under elevated temperature and arid conditions.


Assuntos
Cloroplastos/metabolismo , Glicolatos/metabolismo , Redes e Vias Metabólicas/genética , Oryza/crescimento & desenvolvimento , Oryza/genética , Fotossíntese/fisiologia , Biomassa , Produção Agrícola , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA