Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
IEEE Trans Neural Netw Learn Syst ; 34(7): 3299-3307, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35108212

RESUMO

Understanding the dynamics of deforestation and land uses of neighboring areas is of vital importance for the design and development of appropriate forest conservation and management policies. In this article, we approach deforestation as a multilabel classification (MLC) problem in an endeavor to capture the various relevant land uses from satellite images. To this end, we propose a multilabel vision transformer model, ForestViT, which leverages the benefits of the self-attention mechanism, obviating any convolution operations involved in commonly used deep learning models utilized for deforestation detection. Experimental evaluation in open satellite imagery datasets yields promising results in the case of MLC, particularly for imbalanced classes, and indicates ForestViT's superiority compared with well-established convolutional structures (ResNET, VGG, DenseNet, and ModileNet neural networks). This superiority is more evident for minority classes.


Assuntos
Redes Neurais de Computação , Imagens de Satélites , Conservação dos Recursos Naturais/métodos
2.
NPJ Parkinsons Dis ; 6(1): 36, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33293531

RESUMO

Digital assessments of motor severity could improve the sensitivity of clinical trials and personalise treatment in Parkinson's disease (PD) but have yet to be widely adopted. Their ability to capture individual change across the heterogeneous motor presentations typical of PD remains inadequately tested against current clinical reference standards. We conducted a prospective, dual-site, crossover-randomised study to determine the ability of a 16-item smartphone-based assessment (the index test) to predict subitems from the Movement Disorder Society-Unified Parkinson's Disease Rating Scale part III (MDS-UPDRS III) as assessed by three blinded clinical raters (the reference-standard). We analysed data from 60 subjects (990 smartphone tests, 2628 blinded video MDS-UPDRS III subitem ratings). Subject-level predictive performance was quantified as the leave-one-subject-out cross-validation (LOSO-CV) accuracy. A pre-specified analysis classified 70.3% (SEM 5.9%) of subjects into a similar category to any of three blinded clinical raters and was better than random (36.7%; SEM 4.3%) classification. Post hoc optimisation of classifier and feature selection improved performance further (78.7%, SEM 5.1%), although individual subtests were variable (range 53.2-97.0%). Smartphone-based measures of motor severity have predictive value at the subject level. Future studies should similarly mitigate against subjective and feature selection biases and assess performance across a range of motor features as part of a broader strategy to avoid overly optimistic performance estimates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA