Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Infect Dis Model ; 9(2): 527-556, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38525308

RESUMO

The COVID-19 pandemic has significantly impacted global health, social, and economic situations since its emergence in December 2019. The primary focus of this study is to propose a distinct vaccination policy and assess its impact on controlling COVID-19 transmission in Malaysia using a Bayesian data-driven approach, concentrating on the year 2021. We employ a compartmental Susceptible-Exposed-Infected-Recovered-Vaccinated (SEIRV) model, incorporating a time-varying transmission rate and a data-driven method for its estimation through an Exploratory Data Analysis (EDA) approach. While no vaccine guarantees total immunity against the disease, and vaccine immunity wanes over time, it is critical to include and accurately estimate vaccine efficacy, as well as a constant vaccine immunity decay or wane factor, to better simulate the dynamics of vaccine-induced protection over time. Based on the distribution and effectiveness of vaccines, we integrated a data-driven estimation of vaccine efficacy, calculated at 75% for Malaysia, underscoring the model's realism and relevance to the specific context of the country. The Bayesian inference framework is used to assimilate various data sources and account for underlying uncertainties in model parameters. The model is fitted to real-world data from Malaysia to analyze disease spread trends and evaluate the effectiveness of our proposed vaccination policy. Our findings reveal that this distinct vaccination policy, which emphasizes an accelerated vaccination rate during the initial stages of the program, is highly effective in mitigating the spread of COVID-19 and substantially reducing the pandemic peak and new infections. The study found that vaccinating 57-66% of the population (as opposed to 76% in the real data) with a better vaccination policy such as proposed here is able to significantly reduce the number of new infections and ultimately reduce the costs associated with new infections. The study contributes to the development of a robust and informative representation of COVID-19 transmission and vaccination, offering valuable insights for policymakers on the potential benefits and limitations of different vaccination policies, particularly highlighting the importance of a well-planned and efficient vaccination rollout strategy. While the methodology used in this study is specifically applied to national data from Malaysia, its successful application to local regions within Malaysia, such as Selangor and Johor, indicates its adaptability and potential for broader application. This demonstrates the model's adaptability for policy assessment and improvement across various demographic and epidemiological landscapes, implying its usefulness for similar datasets from various geographical regions.

2.
PLoS One ; 16(5): e0252136, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34043676

RESUMO

The second wave of COVID-19 in Malaysia is largely attributed to a four-day mass gathering held in Sri Petaling from February 27, 2020, which contributed to an exponential rise of COVID-19 cases in the country. Starting from March 18, 2020, the Malaysian government introduced four consecutive phases of a Movement Control Order (MCO) to stem the spread of COVID-19. The MCO was implemented through various non-pharmaceutical interventions (NPIs). The reported number of cases reached its peak by the first week of April and then started to reduce, hence proving the effectiveness of the MCO. To gain a quantitative understanding of the effect of MCO on the dynamics of COVID-19, this paper develops a class of mathematical models to capture the disease spread before and after MCO implementation in Malaysia. A heterogeneous variant of the Susceptible-Exposed-Infected-Recovered (SEIR) model is developed with additional compartments for asymptomatic transmission. Further, a change-point is incorporated to model disease dynamics before and after intervention which is inferred based on data. Related statistical analyses for inference are developed in a Bayesian framework and are able to provide quantitative assessments of (1) the impact of the Sri Petaling gathering, and (2) the extent of decreasing transmission during the MCO period. The analysis here also quantitatively demonstrates how quickly transmission rates fall under effective NPI implementation within a short time period. The models and methodology used provided important insights into the nature of local transmissions to decision makers in the Ministry of Health, Malaysia.


Assuntos
COVID-19/epidemiologia , COVID-19/transmissão , Epidemias , Modelos Biológicos , SARS-CoV-2 , COVID-19/prevenção & controle , Humanos , Malásia/epidemiologia , Quarentena
3.
Artigo em Inglês | MEDLINE | ID: mdl-32098247

RESUMO

The number of tuberculosis (TB) cases in Pakistan ranks fifth in the world. The National TB Control Program (NTP) has recently reported more than 462,920 TB patients in Khyber Pakhtunkhwa province, Pakistan from 2002 to 2017. This study aims to identify spatial and space-time clusters of TB cases in Khyber Pakhtunkhwa province Pakistan during 2015-2019 to design effective interventions. The spatial and space-time cluster analyses were conducted at the district-level based on the reported TB cases from January 2015 to April 2019 using space-time scan statistics (SaTScan). The most likely spatial and space-time clusters were detected in the northern rural part of the province. Additionally, two districts in the west were detected as the secondary space-time clusters. The most likely space-time cluster shows a tendency of spread toward the neighboring districts in the central part, and the most likely spatial cluster shows a tendency of spread toward the neighboring districts in the south. Most of the space-time clusters were detected at the start of the study period 2015-2016. The potential TB clusters in the remote rural part might be associated to the dry-cool climate and lack of access to the healthcare centers in the remote areas.


Assuntos
Tuberculose/epidemiologia , Clima , Humanos , Paquistão/epidemiologia , População Rural , Conglomerados Espaço-Temporais
4.
Australas Phys Eng Sci Med ; 41(3): 633-645, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29948968

RESUMO

Neuroscientists have investigated the functionality of the brain in detail and achieved remarkable results but this area still need further research. Functional magnetic resonance imaging (fMRI) is considered as the most reliable and accurate technique to decode the human brain activity, on the other hand electroencephalography (EEG) is a portable and low cost solution in brain research. The purpose of this study is to find whether EEG can be used to decode the brain activity patterns like fMRI. In fMRI, data from a very specific brain region is enough to decode the brain activity patterns due to the quality of data. On the other hand, EEG can measure the rapid changes in neuronal activity patterns due to its higher temporal resolution i.e., in msec. These rapid changes mostly occur in different brain regions. In this study, multivariate pattern analysis (MVPA) is used both for EEG and fMRI data analysis and the information is extracted from distributed activation patterns of the brain. The significant information among different classes is extracted using two sample t test in both data sets. Finally, the classification analysis is done using the support vector machine. A fair comparison of both data sets is done using the same analysis techniques, moreover simultaneously collected data of EEG and fMRI is used for this comparison. The final analysis is done with the data of eight participants; the average result of all conditions are found which is 65.7% for EEG data set and 64.1% for fMRI data set. It concludes that EEG is capable of doing brain decoding with the data from multiple brain regions. In other words, decoding accuracy with EEG MVPA is as good as fMRI MVPA and is above chance level.


Assuntos
Algoritmos , Mapeamento Encefálico , Encéfalo/fisiologia , Eletroencefalografia , Imageamento por Ressonância Magnética , Adulto , Comportamento , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Análise Multivariada , Adulto Jovem
5.
PLoS One ; 13(6): e0199176, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29920540

RESUMO

Identifying the abnormally high-risk regions in a spatiotemporal space that contains an unexpected disease count is helpful to conduct surveillance and implement control strategies. The EigenSpot algorithm has been recently proposed for detecting space-time disease clusters of arbitrary shapes with no restriction on the distribution and quality of the data, and has shown some promising advantages over the state-of-the-art methods. However, the main problem with the EigenSpot method is that it cannot be adapted to detect more than one spatiotemporal hotspot. This is an important limitation, since, in reality, we may have multiple hotspots, sometimes at the same level of importance. We propose an extension of the EigenSpot algorithm, called Multi-EigenSpot that is able to handle multiple hotspots by iteratively removing previously detected hotspots and re-running the algorithm until no more hotspots are found. In addition, a visualization tool (heatmap) has been linked to the proposed algorithm to visualize multiple clusters with different colors. We evaluated the proposed method using the monthly data on measles cases in Khyber-Pakhtunkhwa, Pakistan (Jan 2016- Dec 2016), and the efficiency was compared with the state-of-the-art methods: EigenSpot and Space-time scan statistic (SaTScan). The results showed the effectiveness of the proposed method for detecting multiple clusters in a spatiotemporal space.


Assuntos
Algoritmos , Sarampo/epidemiologia , Conglomerados Espaço-Temporais , Humanos , Paquistão/epidemiologia , Estações do Ano
6.
Geospat Health ; 13(1): 613, 2018 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-29772882

RESUMO

This study investigated the potential relationship between dengue cases and air quality - as measured by the Air Pollution Index (API) for five zones in the state of Selangor, Malaysia. Dengue case patterns can be learned using prediction models based on feedback (lagged terms). However, the question whether air quality affects dengue cases is still not thoroughly investigated based on such feedback models. This work developed dengue prediction models using the autoregressive integrated moving average (ARIMA) and ARIMA with an exogeneous variable (ARIMAX) time series methodologies with API as the exogeneous variable. The Box Jenkins approach based on maximum likelihood was used for analysis as it gives effective model estimates and prediction. Three stages of model comparison were carried out for each zone: first with ARIMA models without API, then ARIMAX models with API data from the API station for that zone and finally, ARIMAX models with API data from the zone and spatially neighbouring zones. Bayesian Information Criterion (BIC) gives goodness-of-fit versus parsimony comparisons between all elicited models. Our study found that ARIMA models, with the lowest BIC value, outperformed the rest in all five zones. The BIC values for the zone of Kuala Selangor were -800.66, -796.22, and -790.5229, respectively, for ARIMA only, ARIMAX with single API component and ARIMAX with API components from its zone and spatially neighbouring zones. Therefore, we concluded that API levels, either temporally for each zone or spatio- temporally based on neighbouring zones, do not have a significant effect on dengue cases.


Assuntos
Poluentes Atmosféricos/análise , Dengue/epidemiologia , Teorema de Bayes , Malásia/epidemiologia , Modelos Estatísticos , Análise Espacial
7.
Geospat Health ; 12(2): 567, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-29239553

RESUMO

Ability to detect potential space-time clusters in spatio-temporal data on disease occurrences is necessary for conducting surveillance and implementing disease prevention policies. Most existing techniques use geometrically shaped (circular, elliptical or square) scanning windows to discover disease clusters. In certain situations, where the disease occurrences tend to cluster in very irregularly shaped areas, these algorithms are not feasible in practise for the detection of space-time clusters. To address this problem, a new algorithm is proposed, which uses a co-clustering strategy to detect prospective and retrospective space-time disease clusters with no restriction on shape and size. The proposed method detects space-time disease clusters by tracking the changes in space-time occurrence structure instead of an in-depth search over space. This method was utilised to detect potential clusters in the annual and monthly malaria data in Khyber Pakhtunkhwa Province, Pakistan from 2012 to 2016 visualising the results on a heat map. The results of the annual data analysis showed that the most likely hotspot emerged in three sub-regions in the years 2013-2014. The most likely hotspots in monthly data appeared in the month of July to October in each year and showed a strong periodic trend. A Correction has been published: https://doi.org/10.4081/gh.2023.1232


Assuntos
Malária/epidemiologia , Vigilância da População/métodos , Conglomerados Espaço-Temporais , Algoritmos , Análise por Conglomerados , Surtos de Doenças , Humanos , Paquistão/epidemiologia
8.
J Integr Neurosci ; 16(3): 275-289, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28891512

RESUMO

Decoding of human brain activity has always been a primary goal in neuroscience especially with functional magnetic resonance imaging (fMRI) data. In recent years, Convolutional neural network (CNN) has become a popular method for the extraction of features due to its higher accuracy, however it needs a lot of computation and training data. In this study, an algorithm is developed using Multivariate pattern analysis (MVPA) and modified CNN to decode the behavior of brain for different images with limited data set. Selection of significant features is an important part of fMRI data analysis, since it reduces the computational burden and improves the prediction performance; significant features are selected using t-test. MVPA uses machine learning algorithms to classify different brain states and helps in prediction during the task. General linear model (GLM) is used to find the unknown parameters of every individual voxel and the classification is done using multi-class support vector machine (SVM). MVPA-CNN based proposed algorithm is compared with region of interest (ROI) based method and MVPA based estimated values. The proposed method showed better overall accuracy (68.6%) compared to ROI (61.88%) and estimation values (64.17%).


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Imageamento por Ressonância Magnética , Redes Neurais de Computação , Acuidade Visual/fisiologia , Feminino , Humanos , Modelos Lineares , Imageamento por Ressonância Magnética/métodos , Masculino , Análise Multivariada , Testes Neuropsicológicos , Estimulação Luminosa , Máquina de Vetores de Suporte
9.
PLoS One ; 12(5): e0178410, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28558002

RESUMO

Electroencephalogram (EEG)-based decoding human brain activity is challenging, owing to the low spatial resolution of EEG. However, EEG is an important technique, especially for brain-computer interface applications. In this study, a novel algorithm is proposed to decode brain activity associated with different types of images. In this hybrid algorithm, convolutional neural network is modified for the extraction of features, a t-test is used for the selection of significant features and likelihood ratio-based score fusion is used for the prediction of brain activity. The proposed algorithm takes input data from multichannel EEG time-series, which is also known as multivariate pattern analysis. Comprehensive analysis was conducted using data from 30 participants. The results from the proposed method are compared with current recognized feature extraction and classification/prediction techniques. The wavelet transform-support vector machine method is the most popular currently used feature extraction and prediction method. This method showed an accuracy of 65.7%. However, the proposed method predicts the novel data with improved accuracy of 79.9%. In conclusion, the proposed algorithm outperformed the current feature extraction and prediction method.


Assuntos
Cognição , Eletroencefalografia/métodos , Redes Neurais de Computação , Algoritmos , Humanos , Aprendizagem , Funções Verossimilhança
10.
Appl Opt ; 55(32): 9006-9016, 2016 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-27857283

RESUMO

With the knowledge of how edges vary in the presence of a Gaussian blur, a method that uses low-order Tchebichef moments is proposed to estimate the blur parameters: sigma (σ) and size (w). The difference between the Tchebichef moments of the original and the reblurred images is used as feature vectors to train an extreme learning machine for estimating the blur parameters (σ,w). The effectiveness of the proposed method to estimate the blur parameters is examined using cross-database validation. The estimated blur parameters from the proposed method are used in the split Bregman-based image restoration algorithm. A comparative analysis of the proposed method with three existing methods using all the images from the LIVE database is carried out. The results show that the proposed method in most of the cases performs better than the three existing methods in terms of the visual quality evaluated using the structural similarity index.

11.
Biomed Opt Express ; 7(10): 3882-3898, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27867700

RESUMO

Previous studies reported mental stress as one of the major contributing factors leading to various diseases such as heart attack, depression and stroke. An accurate stress assessment method may thus be of importance to clinical intervention and disease prevention. We propose a joint independent component analysis (jICA) based approach to fuse simultaneous measurement of electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) on the prefrontal cortex (PFC) as a means of stress assessment. For the purpose of this study, stress was induced by using an established mental arithmetic task under time pressure with negative feedback. The induction of mental stress was confirmed by salivary alpha amylase test. Experiment results showed that the proposed fusion of EEG and fNIRS measurements improves the classification accuracy of mental stress by +3.4% compared to EEG alone and +11% compared to fNIRS alone. Similar improvements were also observed in sensitivity and specificity of proposed approach over unimodal EEG/fNIRS. Our study suggests that combination of EEG (frontal alpha rhythm) and fNIRS (concentration change of oxygenated hemoglobin) could be a potential means to assess mental stress objectively.

12.
J Integr Neurosci ; 14(2): 155-68, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25939499

RESUMO

Brain is the command center for the body and contains a lot of information which can be extracted by using different non-invasive techniques. Electroencephalography (EEG), Magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) are the most common neuroimaging techniques to elicit brain behavior. By using these techniques different activity patterns can be measured within the brain to decode the content of mental processes especially the visual and auditory content. This paper discusses the models and imaging techniques used in visual decoding to investigate the different conditions of brain along with recent advancements in brain decoding. This paper concludes that it's not possible to extract all the information from the brain, however careful experimentation, interpretation and powerful statistical tools can be used with the neuroimaging techniques for better results.


Assuntos
Encéfalo/irrigação sanguínea , Encéfalo/fisiologia , Vias Visuais/irrigação sanguínea , Vias Visuais/fisiologia , Eletroencefalografia , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Magnetoencefalografia , Oxigênio/sangue , Percepção Visual
13.
IEEE Trans Pattern Anal Mach Intell ; 30(2): 342-7, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18084063

RESUMO

Multibiometric systems fuse information from different sources to compensate for the limitations in performance of individual matchers. We propose a framework for optimal combination of match scores that is based on the likelihood ratio test. The distributions of genuine and impostor match scores are modeled as finite Gaussian mixture model. The proposed fusion approach is general in its ability to handle (i) discrete values in biometric match score distributions, (ii) arbitrary scales and distributions of match scores, (iii) correlation between the scores of multiple matchers and (iv) sample quality of multiple biometric sources. Experiments on three multibiometric databases indicate that the proposed fusion framework achieves consistently high performance compared to commonly used score fusion techniques based on score transformation and classification.

14.
IEEE Trans Pattern Anal Mach Intell ; 28(12): 1902-319, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17108366

RESUMO

Authentication systems based on biometric features (e.g., fingerprint impressions, iris scans, human face images, etc.) are increasingly gaining widespread use and popularity. Often, vendors and owners of these commercial biometric systems claim impressive performance that is estimated based on some proprietary data. In such situations, there is a need to independently validate the claimed performance levels. System performance is typically evaluated by collecting biometric templates from n different subjects, and for convenience, acquiring multiple instances of the biometric for each of the n subjects. Very little work has been done in 1) constructing confidence regions based on the ROC curve for validating the claimed performance levels and 2) determining the required number of biometric samples needed to establish confidence regions of prespecified width for the ROC curve. To simplify the analysis that address these two problems, several previous studies have assumed that multiple acquisitions of the biometric entity are statistically independent. This assumption is too restrictive and is generally not valid. We have developed a validation technique based on multivariate copula models for correlated biometric acquisitions. Based on the same model, we also determine the minimum number of samples required to achieve confidence bands of desired width for the ROC curve. We illustrate the estimation of the confidence bands as well as the required number of biometric samples using a fingerprint matching system that is applied on samples collected from a small population.


Assuntos
Algoritmos , Inteligência Artificial , Biometria/métodos , Dermatoglifia , Modelos Estatísticos , Reconhecimento Automatizado de Padrão/métodos , Simulação por Computador , Interpretação Estatística de Dados , Tamanho da Amostra
15.
IEEE Trans Pattern Anal Mach Intell ; 28(1): 19-30, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16402616

RESUMO

The performance of a fingerprint matching system is affected by the nonlinear deformation introduced in the fingerprint impression during image acquisition. This nonlinear deformation causes fingerprint features such as minutiae points and ridge curves to be distorted in a complex manner. A technique is presented to estimate the nonlinear distortion in fingerprint pairs based on ridge curve correspondences. The nonlinear distortion, represented using the thin-plate spline (TPS) function, aids in the estimation of an "average" deformation model for a specific finger when several impressions of that finger are available. The estimated average deformation is then utilized to distort the template fingerprint prior to matching it with an input fingerprint. The proposed deformation model based on ridge curves leads to a better alignment of two fingerprint images compared to a deformation model based on minutiae patterns. An index of deformation is proposed for selecting the "optimal" deformation model arising from multiple impressions associated with a finger. Results based on experimental data consisting of 1,600 fingerprints corresponding to 50 different fingers collected over a period of two weeks show that incorporating the proposed deformation model results in an improvement in the matching performance.


Assuntos
Algoritmos , Inteligência Artificial , Dermatoglifia , Dedos/anatomia & histologia , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Reconhecimento Automatizado de Padrão/métodos , Artefatos , Biometria/métodos , Humanos , Fotografação/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Pele/anatomia & histologia
16.
IEEE Trans Image Process ; 13(10): 1358-67, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15462145

RESUMO

A Bayesian formulation is proposed for reliable and robust extraction of the directional field in fingerprint images using a class of spatially smooth priors. The spatial smoothness allows for robust directional field estimation in the presence of moderate noise levels. Parametric template models are suggested as candidate singularity models for singularity detection. The parametric models enable joint extraction of the directional field and the singularities in fingerprint impressions by dynamic updating of feature information. This allows for the detection of singularities that may have previously been missed, as well as better aligning the directional field around detected singularities. A criteria is presented for selecting an optimal block size to reduce the number of spurious singularity detections. The best rates of spurious detection and missed singularities given by the algorithm are 4.9% and 7.1%, respectively, based on the NIST 4 database.


Assuntos
Algoritmos , Inteligência Artificial , Dermatoglifia/classificação , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Modelos Biológicos , Reconhecimento Automatizado de Padrão , Gráficos por Computador , Simulação por Computador , Armazenamento e Recuperação da Informação/métodos , Cadeias de Markov , Modelos Estatísticos , Análise Numérica Assistida por Computador , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador , Técnica de Subtração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA