Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Int J Mol Sci ; 23(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36232431

RESUMO

The emergence and rapid evolution of human pathogenic viruses, combined with the difficulties in developing effective vaccines, underline the need to develop innovative broad-spectrum antiviral therapeutic agents. The present study aims to determine the in silico antiviral potential of six bacterial antimicrobial peptides (AMPs), two phytochemicals (silvestrol, andrographolide), and two bacterial secondary metabolites (lyngbyabellin A, hapalindole H) against dengue virus, Zika virus, Ebola virus, the major variants of SARS-CoV-2 and monkeypox virus. The comparison of docking scores obtained with natural biomolecules was performed with specific neutralizing antibodies (positive controls for ClusPro) and antiviral drugs (negative controls for Autodock Vina). Glycocin F was the only natural biomolecule tested to show high binding energies to all viral surface proteins and the corresponding viral cell receptors. Lactococcin G and plantaricin ASM1 also achieved high docking scores with all viral surface proteins and most corresponding cell surface receptors. Silvestrol, andrographolide, hapalindole H, and lyngbyabellin A showed variable docking scores depending on the viral surface proteins and cell receptors tested. Three glycocin F mutants with amino acid modifications showed an increase in their docking energy to the spike proteins of SARS-CoV-2 B.1.617.2 Indian variant, and of the SARS-CoV-2 P.1 Japan/Brazil variant, and the dengue DENV envelope protein. All mutant AMPs indicated a frequent occurrence of valine and proline amino acid rotamers. AMPs and glycocin F in particular are the most promising biomolecules for the development of broad-spectrum antiviral treatments targeting the attachment and entry of viruses into their target cell.


Assuntos
Tratamento Farmacológico da COVID-19 , Dengue , Doença pelo Vírus Ebola , Zika virus , Aminoácidos , Anticorpos Neutralizantes/uso terapêutico , Antivirais/química , Antivirais/farmacologia , Antivirais/uso terapêutico , Benzofuranos , Dengue/tratamento farmacológico , Diterpenos , Doença pelo Vírus Ebola/tratamento farmacológico , Humanos , Simulação de Acoplamento Molecular , Monkeypox virus/metabolismo , Prolina/uso terapêutico , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Valina/uso terapêutico , Zika virus/genética , Zika virus/metabolismo
3.
Ann Clin Microbiol Antimicrob ; 20(1): 79, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34856999

RESUMO

BACKGROUND AND OBJECTIVES: The chemotherapeutic management of infections has become challenging due to the global emergence of antibiotic resistant pathogenic bacteria. The recent expansion of studies on plant-derived natural products has lead to the discovery of a plethora of phytochemicals with the potential to combat bacterial drug resistance via various mechanisms of action. This review paper summarizes the primary antibiotic resistance mechanisms of bacteria and also discusses the antibiotic-potentiating ability of phytoextracts and various classes of isolated phytochemicals in reversing antibiotic resistance in anthrax agent Bacillus anthracis and emerging superbug bacteria. METHODS: Growth inhibitory indices and fractional inhibitory concentration index were applied to evaluate the in vitro synergistic activity of phytoextract-antibiotic combinations in general. FINDINGS: A number of studies have indicated that plant-derived natural compounds are capable of significantly reducing the minimum inhibitory concentration of standard antibiotics by altering drug-resistance mechanisms of B. anthracis and other superbug infection causing bacteria. Phytochemical compounds allicin, oleanolic acid, epigallocatechin gallate and curcumin and Jatropha curcas extracts were exceptional synergistic potentiators of various standard antibiotics. CONCLUSION: Considering these facts, phytochemicals represents a valuable and novel source of bioactive compounds with potent antibiotic synergism to modulate bacterial drug-resistance.


Assuntos
Antraz/tratamento farmacológico , Antibacterianos/farmacologia , Bacillus anthracis/química , Sinergismo Farmacológico , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/farmacologia , Fatores Biológicos , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Compostos Fitoquímicos/farmacologia
4.
Foods ; 10(9)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34574123

RESUMO

The management of insect pests and fungal diseases that cause damage to crops has become challenging due to the rise of pesticide and fungicide resistance. The recent developments in studies related to plant-derived essential oil products has led to the discovery of a range of phytochemicals with the potential to combat pesticide and fungicide resistance. This review paper summarizes and interprets the findings of experimental work based on plant-based essential oils in combination with existing pesticidal and fungicidal agents and novel bioactive natural and synthetic molecules against the insect pests and fungi responsible for the damage of crops. The insect mortality rate and fractional inhibitory concentration were used to evaluate the insecticidal and fungicidal activities of essential oil synergists against crop-associated pests. A number of studies have revealed that plant-derived essential oils are capable of enhancing the insect mortality rate and reducing the minimum inhibitory concentration of commercially available pesticides, fungicides and other bioactive molecules. Considering these facts, plant-derived essential oils represent a valuable and novel source of bioactive compounds with potent synergism to modulate crop-associated insect pests and phytopathogenic fungi.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA