RESUMO
Luminescent covalent organic frameworks (LCOFs) have been employed as platforms for sensing analytes. Judicial incorporation of appropriate functional units inside the framework leads to the different electronic states in the presence of external stimuli, e.g., temperature, pH, etc. We report herein a new COF (TPEPy) as a solid-state acid sensor specific for the highly acidic environments that range from pH â¼0.5 to â¼3.0. This COF shows a protonation-induced reversible color change from bright yellow to deep red upon decreasing the pH from 3 to 0.5 and vice versa. No visual color change was, however, observed above pH 3.0. Photoluminescence (PL) studies show that the intrinsic emission peak of the TPEPy COF at 530 nm is shifted to 420 nm owing to the N-protonation of the imine nitrogen of COF within this pH range. Extensive studies demonstrate that the protonation behavior of the COF is counterion dependent. This was revealed when different acids, e.g., HCl, HNO3, HBr, and HI, were employed. The intensity of the proton-induced emission peak at 420 nm depends significantly upon the counterions with the order of HCl > HNO3 > HBr > HI. These anions interact with the protonated TPEPy COF by cation-anion and H-bonding interactions. Further, the pristine COF showed near white light emission at a particular pH of 2.5 (CIE coordinates 0.27, 0.32). From the PL spectrophotometric titrations, the deprotonation pKa was experimentally found to be 1.8 ± 0.02 for the TPEPy COF. The sensor reported herein is reversible, reusable, and regenerable and is useful for assessing pH fluctuations within a strongly acidic range via digital signaling.
RESUMO
Fluctuations in the number of regulatory molecules and differences in timings of molecular events can generate variation in gene expression among genetically identical cells in the same environmental condition. This variation, termed as expression noise, can create differences in metabolic state and cellular functions, leading to phenotypic heterogeneity. Expression noise and phenotypic heterogeneity have been recognized as important contributors to intra-tumor heterogeneity, and have been associated with cancer growth, progression, and therapy resistance. However, how expression noise changes with cancer progression in actual cancer patients has remained poorly explored. Such an analysis, through identification of genes with increasing expression noise, can provide valuable insights into generation of intra-tumor heterogeneity, and could have important implications for understanding immune-suppression, drug tolerance and therapy resistance. In this work, we performed a genome-wide identification of changes in gene expression noise with cancer progression using single-cell RNA-seq data of lung adenocarcinoma patients at different stages of cancer. We identified 37 genes in epithelial cells that showed an increasing noise trend with cancer progression, many of which were also associated with cancer growth, EMT and therapy resistance. We found that expression of several of these genes was positively associated with expression of mitochondrial genes, suggesting an important role of mitochondria in generation of heterogeneity. In addition, we uncovered substantial differences in sample-specific noise profiles which could have implications for personalized prognosis and treatment.
RESUMO
Membrane formation and aggregation properties of two series of (±) α-tocopherol-based cationic gemini lipids without and with hydroxyl functionalities at the headgroup region (TnS n = 3, 4, 5, 6, 8, and 12; THnS n = 4, 5, 6, 8, and 12) with varying polymethylene spacer lengths were investigated extensively while comparing with the corresponding properties of the monomeric counterparts (TM and THM). Liposomal suspensions of each cationic lipid were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), zeta potential measurements, and small-angle X-ray diffraction studies. The length of the spacer and the presence of hydroxyl functionalities at the headgroup region strongly contribute to the aggregation behavior of these gemini lipids in water. The interaction of each tocopherol lipid with a model phospholipid, 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC)-derived vesicles, was thoroughly examined by differential scanning calorimetry (DSC) and 1,6-diphenyl-1,3,5-hexatriene (DPH)-doped fluorescence anisotropy measurements. The binding efficiency of the cationic tocopherol liposomes with plasmid DNA (pDNA) was followed by an ethidium bromide (EB) exclusion assay and zeta potential measurements, whereas negatively charged micellar sodium dodecyl sulfate (SDS)-mediated release of the pDNA from various preformed pDNA-liposomal complexes (lipoplex) was studied by an ethidium bromide (EB) reintercalation assay. The structural transformation of pDNA upon complexation with liposome was characterized using circular dichroism (CD) spectroscopic measurements. Gemini lipid-pDNA interactions depend on both the presence of hydroxyl functionalities at the headgroups and the length of the spacer chain between the headgroups. Succinctly, we performed a detailed physical-chemical characterization of the membranes formed from cationic monomeric and gemini lipids bearing tocopherol as their hydrophobic backbone and describe the role of inserting the -OH group at the headgroup of such lipids.