Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Soft Matter ; 17(7): 1888-1900, 2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33410858

RESUMO

The saponin ß-aescin from the seed extract of the horse chestnut tree Aesculus hippocastanum has demonstrated a beneficial role in clinical therapy which is in part related to its strong interaction with biological membranes. In this context the present work investigates the self-assembly of nm-sized discoidal lipid nanoparticles composed of ß-aescin and the phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). The discoidal lipid nanoparticles reassemble from small discs into larger discs, ribbons and finally stacks of sheets upon heating from gel-phase to fluid phase DMPC. The morphological transition of the lipid nano-particles is mainly triggered by the phospholipid phase state change. The final morphology depends on the phospholipid-to-saponin ratio and the actual temperature. The study is conducted by small-angle X-ray scattering (SAXS) and transmission (TEM) and freeze fracture electron microscopy (FFEM) are used to cover larger length scales. Two different models, representing a disc and ribbon-like shape are applied to the SAXS data, evaluating possible geometries and molecular mixing of the nano-particles. The stacked sheets are analysed by the Caillé theory.


Assuntos
Dimiristoilfosfatidilcolina , Escina , Bicamadas Lipídicas , Espalhamento a Baixo Ângulo , Sabões , Difração de Raios X
2.
Rev Sci Instrum ; 91(8): 085102, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32872916

RESUMO

An experimental setup is presented for x-ray scattering studies of soft matter under shear flow that employs a low-background coaxial capillary cell coupled to a high-resolution commercial rheometer. The rotor of the Searle type cell is attached to the rheometer shaft, which allows the application of either steady or oscillatory shear of controlled stress or rate on the sample confined in the annular space between the stator and the rotor. The shearing device facilitates ultrasmall-angle x-ray scattering and ultrasmall-angle x-ray photon correlation spectroscopy measurements with relatively low scattering backgrounds. This enables the elucidation of weak structural features otherwise submerged in the background and probes the underlying dynamics. The performance of the setup is demonstrated by means of a variety of colloidal systems subjected to different rheological protocols. Examples include shear deformation of a short-range attractive colloidal gel, dynamics of dilute colloids in shear flow, distortion of the structure factor of a dense repulsive colloidal suspension, shear induced ordering of colloidal crystals, and alignment of multilamellar microtubes formed by a surfactant-polysaccharide mixture. Finally, the new possibilities offered by this setup for investigating soft matter subjected to shear flow by x-ray scattering are discussed.

3.
Langmuir ; 35(49): 16244-16255, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31618036

RESUMO

Mixtures of the phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and the saponin ß-aescin spontaneously form monodisperse, bilayered discoidal micelles (also known as "bicelles" or "nanodisks") in aqueous solution. Such bicelles form below the melting temperature of DMPC when the phospholipids are in the rigid Lß' state and are precursors of spontaneously formed vesicles. The aescin concentration must be far above the cmcaescin (≈0.3-0.4 mM). It was found that the shape and size of the bicelles are tunable by composition. High amounts of aescin decrease the size of the bicelles from diameters of ∼300 Å at 7 mol % to ∼120 Å at 30 mol % ß-aescin. The structures are scrutinized by complementary small-angle X-ray and neutron scattering experiments. The scattering curves are subsequently analyzed by a model-independent (indirect Fourier transform analysis) and a model-based approach where bicelles are described as polydisperse bilayer disks encircled by a ß-aescin rim. Moreover, the monomodal distribution and low polydispersity of the samples were confirmed by photon correlation spectroscopy. The discoidal structures were visualized by transmission electron microscopy.


Assuntos
Membrana Celular/química , Escina/química , Lipídeos de Membrana/química , Micelas , Nanopartículas/química
4.
Sci Rep ; 9(1): 5542, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30944386

RESUMO

The saponin aescin, a mixture of triterpenoid saponins, is obtained from the seeds of the horse chestnut tree Aesculus hippocastanum. The ß-form employed in this study is haemolytically active. The haemolytic activity results from the ability of aescin to form strong complexes with cholesterol in the red blood cell membrane. In this study, we provide a structural analysis on the complex formation of aescin and cholesterol when embedded in a phospholipid model membrane formed by 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). In this work, the temperatures investigated extend from DMPC's Lß' to its Lα phase in dependence of different amounts of the saponin (0-6 mol% for calorimetric and 0-1 mol% for structural analyses) and the steroid (1-10 mol%). At these aescin contents model membranes are conserved in the form of small unilamellar vesicles (SUVs) and major overall structural modifications are avoided. Additionally, interactions between aescin and cholesterol can be studied for both phase states of the lipid, the gel and the fluid state. From calorimetric experiments by differential scanning calorimetry (DSC), it could be shown that both, the steroid and the saponin content, have a significant impact on the cooperative phase transition behaviour of the DMPC molecules. In addition, it becomes clearly visible that the entire phase behaviour is dominated by phase separation which indeed also depends on the complexes formed between aescin and cholesterol. We show by various methods that the addition of cholesterol alters the impact of aescin on structural parameters ranging from the acyl chain correlation to vesicle-vesicle interactions. While the specific saponin-phospholipid interaction is reduced, addition of cholesterol leads to deformation of SUVs. The analyses of the structures formed were performed by wide-angle X-ray scattering (WAXS), small-angle X-ray scattering (SAXS), and small-angle neutron scattering (SANS).


Assuntos
Membrana Celular/química , Colesterol/química , Dimiristoilfosfatidilcolina/química , Escina/química , Varredura Diferencial de Calorimetria , Lipídeos de Membrana/química , Espalhamento de Radiação , Espalhamento a Baixo Ângulo , Temperatura , Difração de Raios X
5.
Biochim Biophys Acta Biomembr ; 1861(5): 897-906, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30735626

RESUMO

The plant-derived biosurfactant aescin is naturally present in many plants and is used for treatment of disorders such as varicose veins and inflammation of veins. The hemolytic activity of this saponin is attributed to its interaction with cholesterol in the red blood cell membrane. This work investigates the phase and aggregation behavior of saponin-containing model membranes consisting of the phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). The aescin concentrations studied range from 1 mol% to 7 mol% with respect to the total lipid content. The methods of choice to elucidate the structural picture are small-angle scattering of X-rays (SAXS) and neutrons (SANS) and cryogenic transmission electron microscopy (cryo-TEM). SANS and SAXS revealed that at lower aescin contents vesicular structures are conserved and vesicles tend to aggregate already at aescin contents of around 1 mol%. Aggregation and vesicle deformation effects are found to be stronger when the phospholipids are in the L [Formula: see text] phase. With increasing aescin content, mixed structures, i.e. aggregated and deformed vesicles and solubilized bilayer fragments, are present. This was proven for a sample with 4 mol% aescin by cryo-TEM. An increasing aescin amount leads to membrane decomposition and free standing bilayers which tend to build stacks at high temperature. These stacks are characterized by SAXS using the modified Caillé theory. Analyses and model dependent fitting reveal formation of well-defined structures beginning at 7 mol% aescin.


Assuntos
Dimiristoilfosfatidilcolina/química , Escina/química , Membranas Artificiais , Microscopia Eletrônica de Transmissão , Espalhamento a Baixo Ângulo , Difração de Raios X
6.
Mol Pharm ; 15(10): 4446-4461, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30102549

RESUMO

In the present work, we study the interaction of the saponin aescin with the nonsteroidal anti-inflammatory drug (NSAID) ibuprofen at concentrations of 1.2-2.5 mM. These amounts are higher than those usually used for medication (10-300 µM) to show possible structures and formulations for orally absorbed drug delivery systems. It is shown how the interaction of both substances, separately or together, alters the thermotropic phase behavior of the 1,2-dimyristoyl- sn-glycero-3-phosphocholine (DMPC) bilayer in the presence of different amounts of aescin, ranging from 20 µM to 1 mM. The methods of choice are differential scanning calorimetry (DSC), and additionally wide-angle (WAXS) and small-angle X-ray scattering (SAXS). We found that these two additives, aescin and ibuprofen, alter the temperature-dependent structural appearance of the DMPC membrane depending on the aescin and drug content. The presence of the saponin and the drug become visible on different length scales, i.e., ranging from a global structural change to inner-membrane interactions. DSC reveals that the drug and saponin alter the cooperativity of the DMPC phase transition in a concentration-dependent manner. Furthermore, there is a significant difference between the drug-containing compared to the drug-free systems. By WAXS, we could resolve that aescin reverses the strong impact of ibuprofen on the diffraction peak of DMPC. Both molecules interact strongly with the phospholipid headgroups. This becomes visible in a changing area per lipid and shifting phase transition to higher temperatures. SAXS experiments reveal that the addition of ibuprofen leads to major morphological changes in the phospholipid bilayer. SAXS experiments performed on representative samples do not only cover the drug-saponin interaction within the bilayer from the structural perspective but also confirm the visually observed macroscopic concentration and temperature-dependent phase behavior. Vesicular shape of extruded samples is conserved at low aescin contents. At intermediate aescin content, aggregation between vesicles occurs, whereby the strength of aggregation is reduced by ibuprofen. At high aescin contents, DMPC bilayers are solubilized. The kind of formed structures depends on temperature and drug content. At low temperature, separated bilayer sheets are formed. Their size increases with ibuprofen in a concentration-dependent manner. At high temperature, the drug-free system reorganizes into stacked sheets. Whereas sheets at 5 mol % ibuprofen close to vesicles, the ones with 10 mol % of the drug increase massively in size. Altogether, ibuprofen was found to rather enhance than inhibit structural and thermotropic membrane modifications induced by the aescin on the DMPC model membrane.


Assuntos
Dimiristoilfosfatidilcolina/química , Escina/química , Ibuprofeno/química , Bicamadas Lipídicas/química , Saponinas/química , Varredura Diferencial de Calorimetria , Espalhamento a Baixo Ângulo
7.
Nano Lett ; 18(6): 3675-3681, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29781269

RESUMO

We studied the formation of supraparticles from nanocrystals confined in slowly evaporating oil droplets in an oil-in-water emulsion. The nanocrystals consist of an FeO core, a CoFe2O4 shell, and oleate capping ligands, with an overall diameter of 12.5 nm. We performed in situ small- and wide-angle X-ray scattering experiments during the entire period of solvent evaporation and colloidal crystallization. We observed a slow increase in the volume fraction of nanocrystals inside the oil droplets up to 20%, at which a sudden crystallization occurs. Our computer simulations show that crystallization at such a low volume fraction is only possible if attractive interactions between colloidal nanocrystals are taken into account in the model as well. The spherical supraparticles have a diameter of about 700 nm and consist of a few crystalline face-centered cubic domains. Nanocrystal supraparticles bear importance for magnetic and optoelectronic applications, such as color tunable biolabels, color tunable phosphors in LEDs, and miniaturized lasers.

8.
J Chem Phys ; 148(1): 014904, 2018 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-29306301

RESUMO

The evolution of interactions and dynamics of Janus colloidal particles suspended in quasi-binary liquid mixtures undergoing phase separation is presented. The experimental system consisted of silica-nickel Janus particles dispersed in mixtures of 3-methylpyridine, water, and heavy water. Colloidal microstructure and dynamics were probed by ultra-small-angle X-ray scattering and ultra-small-angle X-ray photon correlation spectroscopy, respectively. The observed static and dynamic behaviors are significantly different from those found for Stöber silica colloids in this mixture. The Janus particles manifest a slow aggregation below the coexistence temperature and become strongly attractive upon phase separation of the solvent mixture. In the two-phase region, particles tend to display surfactant-like behavior with silica and nickel surfaces likely preferring water and 3-methylpyridine rich phases, respectively. While the onset of diffusiophoretic motion is evident in the dynamics, it is gradually suppressed by particle clustering at the investigated colloid volume fractions.

9.
Biophys Chem ; 234: 16-23, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29328990

RESUMO

The influenza virus polymerase complex is a promising target for new antiviral drug development. It is known that, within the influenza virus polymerase complex, the PB1 subunit region from the 1st to the 25th amino acid residues has to be is in an alpha-helical conformation for proper interaction with the PA subunit. We have previously shown that PB1(6-13) peptide at low concentrations is able to interact with the PB1 subunit N-terminal region in a peptide model which shows aggregate formation and antiviral activity in cell cultures. In this paper, it was shown that PB1(6-13) peptide is prone to form the amyloid-like fibrillar aggregates. The peptide homo-oligomerization kinetics were examined, and the affinity and characteristic interaction time of PB1(6-13) peptide monomers and the influenza virus polymerase complex PB1 subunit N-terminal region were evaluated by the SPR and TR-SAXS methods. Based on the data obtained, a hypothesis about the PB1(6-13) peptide mechanism of action was proposed: the peptide in its monomeric form is capable of altering the conformation of the PB1 subunit N-terminal region, causing a change from an alpha helix to a beta structure. This conformational change disrupts PB1 and PA subunit interaction and, by that mechanism, the peptide displays antiviral activity.


Assuntos
Antivirais/química , Antivirais/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Proteínas Virais/química , Testes de Sensibilidade Microbiana , Proteínas Virais/farmacologia
10.
R Soc Open Sci ; 5(9): 180937, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30839721

RESUMO

1,8-Diiodooctane (DIO) is an additive used in the processing of organic photovoltaics and has previously been reported, on the basis of small-angle X-ray scattering (SAXS) measurements, to deflocculate nano-aggregates of [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) in chlorobenzene. We have critically re-examined this finding in a series of scattering measurements using both X-rays and neutrons. With SAXS, we find that the form of the background solvent scattering is influenced by the presence of DIO, that there is substantial attenuation of the X-rays by the background solvent and that there appears to be beam-induced aggregation. All three factors call into question the suitability of SAXS for measurements on these samples. By contrast, small-angle neutron scattering (SANS) measurements, performed at concentrations of 15 mg ml-1 up to and including 40 mg ml-1, show no difference in the aggregation state for PC71BM in chlorobenzene with and without 3% DIO; we find PC71BM to be molecularly dissolved in all solvent cases. In situ film thinning measurements of spin-coated PC71BM solution with the DIO additive dry much slower. Optical imaging shows that the fullerene films possess enhanced molecular mobility in the presence of DIO and it is this which, we conclude, improves the nanomorphology and consequently solar cell performance. We propose that any compatible high boiling solvent would be expected to show the same behaviour.

12.
Soft Matter ; 13(15): 2817-2822, 2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28345703

RESUMO

The enhanced motion of dispersed particles driven by a concentration gradient is the basis for diffusiophoresis. Here we present the dynamics of colloids in a phase separating medium probed by X-Ray Photon Correlation Spectroscopy (XPCS) in the ultra-small angle scattering range. Charge stabilized silica colloids suspended in a binary mixture of 3-methylpyridine and water/heavy water are preferentially wetted by 3-methylpyridine and consequently display a phoretic motion towards that phase upon demixing. This activity lasts for hundreds of seconds before the phase separation is complete and the enhanced motion is arrested as the colloids return to normal diffusive dynamics.

13.
J Phys Chem B ; 121(14): 3059-3069, 2017 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-28328228

RESUMO

Most amyloid assemblies are seen as irreversible and exhibit polymorphism because their assembly is kinetically controlled and different structures are trapped during the aggregation process. However, in the specific case of peptide hormones, formation of amyloid assemblies for storage purposes has been reported. This suggests a strict control of assembly and the ability to disassemble upon hormone secretion. In the present work, we have sought to test these assertions with a short peptide, the cholecystokinin (or gastrin) tetrapeptide (CCK-4), that has been found in both gastrointestinal tract and central nervous system, and whose sequence is shared by a large number of hormones. We have thus studied in vitro this peptide's self-assembling properties in dense phases at different pH levels, thus mimicking in vivo storage conditions. The solubility and morphology of the supramolecular assemblies have been shown to vary with the pH. At low pH, the tetrapeptide exhibits a low solubility and forms microcrystals. At higher pH levels, peptide solubility increases and above a high enough concentration, peptide monomers self-assemble into typical amyloid fibrils of 10-20 nm diameter. The physical network formed by these fibrils results in a birefringent hydrogel phase. Despite the different morphological features exhibited at different pH, structural analysis shows strong similarities. Both supramolecular assemblies-microcrystals and fibrils-are structured by ß-sheets. We also show that all these morphologies are reversible and can be either dissolved or changed into one another by switching the pH. In addition, we demonstrate that a modification in the charge sequence of the peptide by amino acid mutation modifies its self-assembly properties. In conclusion, just as the CCK-4 sequence is the minimal sequence required for a complete biological activity at CCKB receptors in the brain, it is also sufficient to form amyloid fibers whose properties can be related to hormone storage and release purposes in vivo.


Assuntos
Amiloide/síntese química , Colecistocinina/química , Oligopeptídeos/química , Amiloide/química , Concentração de Íons de Hidrogênio , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
14.
Biomacromolecules ; 18(1): 141-149, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-27983808

RESUMO

The bola-amphiphilic arginine-capped peptide RFL4RF self-assembles into nanotubes in aqueous solution. The nanostructure and rheology are probed by in situ simultaneous rheology/small-angle scattering experiments including rheo-SAXS, rheo-SANS, and rheo-GISANS (SAXS: small-angle X-ray scattering, SANS: small-angle neutron scattering, GISANS: grazing incidence small-angle neutron scattering). Nematic alignment of peptide nanotubes under shear is observed at sufficiently high shear rates under steady shear in either Couette or cone-and-plate geometry. The extent of alignment increases with shear rate. A shear plateau is observed in a flow curve measured in the Couette geometry, indicating the presence of shear banding above the shear rate at which significant orientation is observed (0.1-1 s-1). The orientation under shear is transient and is lost as soon as shear is stopped. GISANS shows that alignment at the surface of a cone-and-plate cell develops at sufficiently high shear rates, very similar to that observed in the bulk using the Couette geometry. A small isotope effect (comparing H2O/D2O solvents) is noted in the CD spectra indicating increased interpeptide hydrogen bonding in D2O, although this does not influence nanotube self-assembly. These results provide new insights into the controlled alignment of peptide nanotubes for future applications.


Assuntos
Arginina/química , Micelas , Nanotubos de Peptídeos/química , Polietilenoglicóis/química , Humanos , Reologia , Espalhamento a Baixo Ângulo , Resistência ao Cisalhamento , Difração de Raios X
15.
J Phys Chem B ; 120(40): 10540-10546, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27700097

RESUMO

A complex mesoscopic organization is observed in systems containing ethylammonium nitrate (EAN) and two nonamphiphilic compounds, using wide and small angle X-ray scattering and molecular dynamics simulations. The macroscopically homogeneous mixtures exhibit a separation where an ionic liquid-rich region is percolating a molecular liquid-rich one, but no unmixing is observed. This effect was already reported in EAN-alcohol mixtures, but the models proposed so far cannot explain this behavior for a nonamphiphilic compound.

16.
Rev Sci Instrum ; 87(12): 125116, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28040915

RESUMO

We present a new experimental setup for time-resolved solution small-angle X-ray scattering (SAXS) studies of kinetic processes induced by sub-ms hydrostatic pressure jumps. It is based on a high-force piezo-stack actuator, with which the volume of the sample can be dynamically compressed. The presented setup has been designed and optimized for SAXS experiments with absolute pressures of up to 1000 bars, using transparent diamond windows and an easy-to-change sample capillary. The pressure in the cell can be changed in less than 1 ms, which is about an order of magnitude faster jump than previously obtained by dynamic pressure setups for SAXS. An additional temperature control offers the possibility for automated mapping of p-T phase diagrams. Here we present the technical specifications and first experimental data taken together with a preview of new research opportunities enabled by this setup.

17.
Sci Rep ; 5: 15149, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26468676

RESUMO

Morphological stability is a key requirement for outdoor operation of organic solar cells. We demonstrate that morphological stability and lifetime of polymer/fullerene based solar cells under thermal stress depend strongly on the substrate interface on which the active layer is deposited. In particular, we find that the stability of benchmark PCDTBT/PCBM solar cells under modest thermal stress is substantially increased in inverted solar cells employing a ZnO substrate compared to conventional devices employing a PEDOT: PSS substrate. This improved stability is observed to correlate with PCBM nucleation at the 50 nm scale, which is shown to be strongly influenced by different substrate interfaces. Employing this approach, we demonstrate remarkable thermal stability for inverted PCDTBT:PC70BM devices on ZnO substrates, with negligible (<2%) loss of power conversion efficiency over 160 h under 85 °C thermal stress and minimal thermally induced "burn-in" effect. We thus conclude that inverted organic solar cells, in addition to showing improved environmental stability against ambient humidity exposure as widely reported previously, can also demonstrate enhanced morphological stability. As such we show that the choice of suitable substrate interfaces may be a key factor in achieving prolonged lifetimes for organic solar cells under thermal stress conditions.

18.
Soft Matter ; 11(16): 3125-31, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25739808

RESUMO

We report the phase behaviour of polymer/fullerene/solvent ternary mixtures and its consequence for the morphology of the resulting composite thin films. We focus particularly on solutions of polystyrene (PS), C60 fullerene and toluene, which are examined by static and dynamic light scattering, and films obtained from various solution ages and thermal annealing conditions, using atomic force and light microscopy. Unexpectedly, the solution phase behaviour below the polymer overlap concentration, c*, is found to be described by a simple excluded volume argument (occupied by the polymer chains) and the neat C60/solvent miscibility. Scaling consistent with full exclusion is found when the miscibility of the fullerene in the solvent is much lower than that of the polymer, giving way to partial exclusion with more soluble fullerenes (phenyl-C61-butyric acid methyl ester, PCBM) and a less asymmetric solvent (chlorobenzene), employed in photovoltaic devices. Spun cast and drop cast films were prepared from PS/C60/toluene solutions across the phase diagram to yield an identical PS/C60 composition and film thickness, resulting in qualitatively different morphologies in agreement with our measured solution phase boundaries. Our findings are relevant to the solution processing of polymer/fullerene composites (including organic photovoltaic devices), which generally require effective solubilisation of fullerene derivatives and polymer pairs in this concentration range, and the design of well-defined thin film morphologies.

19.
Chemphyschem ; 16(6): 1231-8, 2015 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-25641060

RESUMO

Rapid precipitation, immersion of a liquid formulation into a nonsolvent, is compared with drop casting for fabricating organic solar cells. Blends comprising poly-3-hexylthiophene (P3HT), phenyl-C61-butyric acid methyl ester (PCBM), and chlorobenzene were processed into bulk samples by using two distinct routes: rapid precipitation and drop casting. The resulting structure, phases, and crystallinity were analyzed by using small-angle neutron scattering, X-ray diffraction, differential scanning calorimetry, and muon spin resonance. Rapid precipitation was found to induce a finely structured phase separation between PCBM and P3HT, with 65 wt % crystallinity in the P3HT phase. In contrast, solvent casting resulted in a mixed PCBM/P3HT phase with only 43 wt % P3HT crystallinity. The structural advantages conferred by rapid precipitation were shown to persist following intense thermal treatments.

20.
J Colloid Interface Sci ; 446: 24-30, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25646787

RESUMO

We investigate the environmental stability of fullerene solutions by static and dynamic light scattering, FTIR, NMR and mass spectroscopies, and quantum chemical calculations. We find that visible light exposure of fullerene solutions in toluene, a good solvent, under ambient laboratory conditions results in C60 oxidation to form fullerene epoxides, and subsequently causes fullerene clustering in solution. The clusters grow with time, even in absence of further illumination, and can reach dimensions from ≈100 nm to the µm scale over ≈1 day. Static light scattering suggests that resulting aggregates are fractal, with a characteristic power law (d(f)) that increases from approximately 1.3 to 2.0 during light exposure. The clusters are bound by weak Coulombic interactions and are found to be reversible, disintegrating by mechanical agitation and thermal stress, and reforming over time. Our findings are relevant to the solution processing of composites and organic photovoltaics, whose reproducibility and performance requires control of fullerene solution stability under storage conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA