Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Biol Chem ; 298(4): 101770, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35271850

RESUMO

The cellular prion protein (PrPC) has a C-terminal globular domain and a disordered N-terminal region encompassing five octarepeats (ORs). Encounters between Cu(II) ions and four OR sites produce interchangeable binding geometries; however, the significance of Cu(II) binding to ORs in different combinations is unclear. To understand the impact of specific binding geometries, OR variants were designed that interact with multiple or single Cu(II) ions in specific locked coordinations. Unexpectedly, we found that one mutant produced detergent-insoluble, protease-resistant species in cells in the absence of exposure to the infectious prion protein isoform, scrapie-associated prion protein (PrPSc). Formation of these assemblies, visible as puncta, was reversible and dependent upon medium formulation. Cobalamin (Cbl), a dietary cofactor containing a corrin ring that coordinates a Co3+ ion, was identified as a key medium component, and its effect was validated by reconstitution experiments. Although we failed to find evidence that Cbl interacts with Cu-binding OR regions, we instead noted interactions of Cbl with the PrPC C-terminal domain. We found that some interactions occurred at a binding site of planar tetrapyrrole compounds on the isolated globular domain, but others did not, and N-terminal sequences additionally had a marked effect on their presence and position. Our studies define a conditional effect of Cbl wherein a mutant OR region can act in cis to destabilize a globular domain with a wild type sequence. The unexpected intersection between the properties of PrPSc's disordered region, Cbl, and conformational remodeling events may have implications for understanding sporadic prion disease that does not involve exposure to PrPSc.


Assuntos
Doenças Priônicas , Proteínas Priônicas , Príons , Animais , Cobre/metabolismo , Peso Molecular , Mutação , Doenças Priônicas/genética , Doenças Priônicas/fisiopatologia , Proteínas Priônicas/química , Proteínas Priônicas/genética , Príons/genética , Príons/metabolismo , Príons/patogenicidade , Ligação Proteica/genética , Vitamina B 12/metabolismo
2.
Vet Sci ; 8(9)2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34564594

RESUMO

Previously, we showed that bacterial lipopolysaccharide (LPS) converts mouse PrPC protein to a beta-rich isoform (moPrPres) resistant to proteinase K. In this study, we aimed to test if the LPS-converted PrPres is infectious and alters the expression of genes related to prion pathology in brains of terminally sick mice. Ninety female FVB/N mice at 5 weeks of age were randomly assigned to 6 groups treated subcutaneously (sc) for 6 weeks either with: (1) Saline (CTR); (2) LPS from Escherichia coli 0111:B4 (LPS), (3) one-time sc administration of de novo generated mouse recombinant prion protein (moPrP; 29-232) rich in beta-sheet by incubation with LPS (moPrPres), (4) LPS plus one-time sc injection of moPrPres, (5) one-time sc injection of brain homogenate from Rocky Mountain Lab (RLM) scrapie strain, and (6) LPS plus one-time sc injection of RML. Results showed that all treatments altered the expression of various genes related to prion disease and neuroinflammation starting at 11 weeks post-infection and more profoundly at the terminal stage. In conclusion, sc administration of de novo generated moPrPres, LPS, and a combination of moPrPres with LPS were able to alter the expression of multiple genes typical of prion pathology and inflammation.

3.
BMC Biol ; 19(1): 199, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34503506

RESUMO

BACKGROUND: The microtubule-associated protein tau forms aggregates in different neurodegenerative diseases called tauopathies. Prior work has shown that a single P301L mutation in tau gene, MAPT, can promote alternative tau folding pathways that correlate with divergent clinical diagnoses. Using progressive chemical denaturation, some tau preparations from the brain featured complex transitions starting at low concentrations of guanidine hydrochloride (GdnHCl) denaturant, indicating an ensemble of differently folded tau species called conformers. On the other hand, brain samples with abundant, tangle-like pathology had simple GdnHCl unfolding profile resembling the profile of fibrillized recombinant tau and suggesting a unitary conformer composition. In studies here we sought to understand tau conformer progression and potential relationships with condensed liquid states, as well as associated perturbations in cell biological processes. RESULTS: As starting material, we used brain samples from P301L transgenic mice containing tau conformer ensembles that unfolded at low GdnHCl concentrations and with signatures resembling brain material from P301L subjects presenting with language or memory problems. We seeded reporter cells expressing a soluble form of 4 microtubule-binding repeat tau fused to GFP or YFP reporter moieties, resulting in redistribution of dispersed fluorescence signals into focal assemblies that could fuse together and move within processes between adjacent cells. Nuclear envelope fluorescent tau signals and small fluorescent inclusions behaved as a demixed liquid phase, indicative of liquid-liquid phase separation (LLPS); these droplets exhibited spherical morphology, fusion events and could recover from photobleaching. Moreover, juxtanuclear tau assemblies were associated with disrupted nuclear transport and reduced cell viability in a stable cell line. Staining for thioflavin S (ThS) became more prevalent as tau-derived inclusions attained cross-sectional area greater than 3 µm2, indicating (i) a bipartite composition, (ii) in vivo progression of tau conformers, and (iii) that a mass threshold applying to demixed condensates may drive liquid-solid transitions. CONCLUSIONS: Tau conformer ensembles characterized by denaturation at low GdnHCl concentration templated the production of condensed droplets in living cells. These species exhibit dynamic changes and develop in vivo, and the larger ThS-positive assemblies may represent a waystation to arrive at intracellular fibrillar tau inclusions seen in end-stage genetic tauopathies.


Assuntos
Doenças Neurodegenerativas , Membrana Nuclear , Tauopatias , Animais , Encéfalo , Camundongos , Camundongos Transgênicos , Tauopatias/genética
5.
Mol Neurobiol ; 58(1): 375-390, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32959170

RESUMO

Prion diseases are fatal neurodegenerative diseases in mammals with the unique characteristics of misfolding and aggregation of the cellular prion protein (PrPC) to the scrapie prion (PrPSc). Although neuroinflammation and neuronal loss feature within the disease process, the details of PrPC/PrPSc molecular transition to generate different aggregated species, and the correlation between each species and sequence of cellular events in disease pathogenesis are not fully understood. In this study, using mice inoculated with the RML isolate of mouse-adapted scrapie as a model, we applied asymmetric flow field-flow fractionation to monitor PrPC and PrPSc particle sizes and we also measured seeding activity and resistance to proteases. For cellular analysis in brain tissue, we measured inflammatory markers and synaptic damage, and used the isotropic fractionator to measure neuronal loss; these techniques were applied at different timepoints in a cross-sectional study of disease progression. Our analyses align with previous reports defining significant decreases in PrPC levels at pre-clinical stages of the disease and demonstrate that these decreases become significant before neuronal loss. We also identified the earliest PrPSc assemblies at a timepoint equivalent to 40% elapsed time for the disease incubation period; we propose that these assemblies, mostly composed of proteinase K (PK)-sensitive species, play an important role in triggering disease pathogenesis. Lastly, we show that the PK-resistant assemblies of PrPSc that appear at timepoints close to the terminal stage have similar biophysical characteristics, and hence that preparative use of PK-digestion selects for this specific subpopulation. In sum, our data argue that qualitative, as well as quantitative, changes in PrP conformers occur at the midpoint of subclinical phase; these changes affect quaternary structure and may occur at the threshold where adaptive responses become inadequate to deal with pathogenic processes.


Assuntos
Progressão da Doença , Regulação para Baixo , Proteínas PrPC/metabolismo , Proteínas PrPSc/química , Scrapie/patologia , Animais , Biomarcadores/metabolismo , Encéfalo/patologia , Morte Celular , Endopeptidase K/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Inflamação/patologia , Camundongos , Peso Molecular , Proteínas PrPSc/metabolismo , Estrutura Quaternária de Proteína , Solubilidade , Sinapses/patologia , Fatores de Tempo
6.
Acta Neuropathol ; 139(6): 1045-1070, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32219515

RESUMO

Tau protein accumulation is a common denominator of major dementias, but this process is inhomogeneous, even when triggered by the same germline mutation. We considered stochastic misfolding of human tau conformers followed by templated conversion of native monomers as an underlying mechanism and derived sensitive conformational assays to test this concept. Assessments of brains from aged TgTauP301L transgenic mice revealed a prodromal state and three distinct signatures for misfolded tau. Frontotemporal lobar degeneration (FTLD)-MAPT-P301L patients with different clinical phenotypes also displayed three signatures, two resembling those found in TgTauP301L mice. As physicochemical and cell bioassays confirmed diverse tau strains in the mouse and human brain series, we conclude that evolution of diverse tau conformers is intrinsic to the pathogenesis of this uni-allelic form of tauopathy. In turn, effective therapeutic interventions in FTLD will need to address evolving repertoires of misfolded tau species rather than singular, static molecular targets.


Assuntos
Degeneração Lobar Frontotemporal/genética , Proteínas tau/metabolismo , Idoso , Animais , Encéfalo/patologia , Feminino , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/patologia , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Mutação/genética , Fenótipo , Tauopatias/patologia , Proteínas tau/genética
7.
Mol Neurobiol ; 56(11): 7888-7904, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31129810

RESUMO

The Shadoo protein (Sho) exhibits homology to the hydrophobic region of the cellular isoform of prion protein (PrPC). As prion-infected brains gradually accumulate infectivity-associated isoforms of prion protein (PrPSc), levels of mature endogenous Sho become reduced. To study the regulatory effect of the proteostatic network on Sho expression, we investigated the action of lactacystin, MG132, NH4Cl, and 3-methyladenine (3-MA) in two cell culture models. In primary mixed neuronal and glial cell cultures (MNGCs) from transgenic mice expressing wild-type Sho from the PrP gene promoter (Tg.Sprn mice), lactacystin- and MG132-mediated inhibition of proteasomal activity shifted the repertoire of Sho species towards unglycosylated forms appearing in the nuclei; conversely, the autophagic modulators NH4Cl and 3-MA did not affect Sho or PrPC glycosylation patterns. Mouse N2a neuroblastoma cells expressing Sho under control of a housekeeping gene promoter treated with MG132 or lactacystin also showed increased nuclear localization of unglycosylated Sho. As two proteasomal inhibitors tested in two cell paradigms caused redirection of Sho to nuclei at the expense of processing through the secretory pathway, our findings define a balanced shift in subcellular localization that thereby differs from the decreases in net Sho species seen in prion-infected brains. Our data are indicative of a physiological pathway to access Sho functions in the nucleus under conditions of impaired proteasomal activity. We also infer that these conditions would comprise a context wherein Sho's N-terminal nucleic acid-binding RGG repeat region is brought into play.


Assuntos
Núcleo Celular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Príons/metabolismo , Inibidores de Proteassoma/farmacologia , Acetilcisteína/análogos & derivados , Acetilcisteína/farmacologia , Animais , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Proteínas Ligadas por GPI , Humanos , Leupeptinas/farmacologia , Camundongos Knockout , Modelos Biológicos , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Regiões Promotoras Genéticas/genética
8.
J Biol Chem ; 294(8): 2642-2650, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30578300

RESUMO

The cellular prion protein (PrPC) is a glycoprotein that is processed through several proteolytic pathways. Modulators of PrPC proteolysis are of interest because full-length PrPC and its cleavage fragments differ in their propensity to misfold, a process that plays a key role in the pathogenesis of prion diseases. PrPC may also act as a receptor for neurotoxic, oligomeric species of other proteins that are linked to neurodegeneration. Importantly, the PrPC C-terminal fragment C1 does not contain the reported binding sites for these oligomers. Western blotting would be a simple end point detection method for cell-based screening of compound libraries for effects on PrPC proteolysis or overall expression level. However, traditional Western blotting methods provide unreliable quantification and have only low throughput. Consequently, we explored capillary-based Western technology as a potential alternative; we believe that this study is the first to report analysis of PrPC using such an approach. We successfully optimized the detection and quantification of the deglycosylated forms of full-length PrPC and its C-terminal cleavage fragments C1 and C2, including simultaneous quantification of ß-tubulin levels to control for loading error. We also developed and tested a method for performing all cell culture, lysis, and deglycosylation steps in 96-well microplates prior to capillary Western analysis. These advances represent steps along the way to the development of an automated, high-throughput screening pipeline to identify modulators of PrPC expression levels or proteolysis.


Assuntos
Western Blotting/métodos , Encéfalo/metabolismo , Células Epiteliais/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Rim/metabolismo , Proteínas PrPC/metabolismo , Animais , Células Epiteliais/citologia , Rim/citologia , Camundongos , Camundongos Transgênicos , Proteólise , Coelhos
9.
PLoS Pathog ; 14(1): e1006826, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29338055

RESUMO

To explore pathogenesis in a young Gerstmann-Sträussler-Scheinker Disease (GSS) patient, the corresponding mutation, an eight-residue duplication in the hydrophobic region (HR), was inserted into the wild type mouse PrP gene. Transgenic (Tg) mouse lines expressing this mutation (Tg.HRdup) developed spontaneous neurologic syndromes and brain extracts hastened disease in low-expressor Tg.HRdup mice, suggesting de novo formation of prions. While Tg.HRdup mice exhibited spongiform change, PrP aggregates and the anticipated GSS hallmark of a proteinase K (PK)-resistant 8 kDa fragment deriving from the center of PrP, the LGGLGGYV insertion also imparted alterations in PrP's unstructured N-terminus, resulting in a 16 kDa species following thermolysin exposure. This species comprises a plausible precursor to the 8 kDa PK-resistant fragment and its detection in adolescent Tg.HRdup mice suggests that an early start to accumulation could account for early disease of the index case. A 16 kDa thermolysin-resistant signature was also found in GSS patients with P102L, A117V, H187R and F198S alleles and has coordinates similar to GSS stop codon mutations. Our data suggest a novel shared pathway of GSS pathogenesis that is fundamentally distinct from that producing structural alterations in the C-terminus of PrP, as observed in other prion diseases such as Creutzfeldt-Jakob Disease and scrapie.


Assuntos
Doença de Gerstmann-Straussler-Scheinker/genética , Mutação , Proteínas PrPSc/química , Proteínas PrPSc/genética , Doenças Priônicas/genética , Adulto , Alelos , Sequência de Aminoácidos , Animais , Humanos , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Fragmentos de Peptídeos/genética , Proteínas PrPSc/metabolismo , Domínios Proteicos/genética , Precursores de Proteínas/química , Precursores de Proteínas/genética
10.
PLoS One ; 12(12): e0188989, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29220360

RESUMO

Prion diseases have been linked to impaired copper homeostasis and copper induced-oxidative damage to the brain. Divalent metal ions, such as Cu2+ and Zn2+, bind to cellular prion protein (PrPC) at octapeptide repeat (OR) and non-OR sites within the N-terminal half of the protein but information on the impact of such binding on conversion to the misfolded isoform often derives from studies using either OR and non-OR peptides or bacterially-expressed recombinant PrP. Here we created new transgenic mouse lines expressing PrP with disrupted copper binding sites within all four histidine-containing OR's (sites 1-4, H60G, H68G, H76G, H84G, "TetraH>G" allele) or at site 5 (composed of residues His-95 and His-110; "H95G" allele) and monitored the formation of misfolded PrP in vivo. Novel transgenic mice expressing PrP(TetraH>G) at levels comparable to wild-type (wt) controls were susceptible to mouse-adapted scrapie strain RML but showed significantly prolonged incubation times. In contrast, amino acid replacement at residue 95 accelerated disease progression in corresponding PrP(H95G) mice. Neuropathological lesions in terminally ill transgenic mice were similar to scrapie-infected wt controls, but less severe. The pattern of PrPSc deposition, however, was not synaptic as seen in wt animals, but instead dense globular plaque-like accumulations of PrPSc in TgPrP(TetraH>G) mice and diffuse PrPSc deposition in (TgPrP(H95G) mice), were observed throughout all brain sections. We conclude that OR and site 5 histidine substitutions have divergent phenotypic impacts and that cis interactions between the OR region and the site 5 region modulate pathogenic outcomes by affecting the PrP globular domain.


Assuntos
Histidina/química , Proteínas Priônicas/química , Scrapie/patologia , Animais , Camundongos , Camundongos Transgênicos
11.
Mol Neurodegener ; 12(1): 72, 2017 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-28978354

RESUMO

BACKGROUND: MAPT mutations cause neurodegenerative diseases such as frontotemporal dementia but, strikingly, patients with the same mutation may have different clinical phenotypes. METHODS: Given heterogeneities observed in a transgenic (Tg) mouse line expressing low levels of human (2 N, 4R) P301L Tau, we backcrossed founder stocks of mice to C57BL/6Tac, 129/SvEvTac and FVB/NJ inbred backgrounds to discern the role of genetic versus environmental effects on disease-related phenotypes. RESULTS: Three inbred derivatives of a TgTauP301L founder line had similar quality and steady-state quantity of Tau production, accumulation of abnormally phosphorylated 64-68 kDa Tau species from 90 days of age onwards and neuronal loss in aged Tg mice. Variegation was not seen in the pattern of transgene expression and seeding properties in a fluorescence-based cellular assay indicated a single "strain" of misfolded Tau. However, in other regards, the aged Tg mice were heterogeneous; there was incomplete penetrance for Tau deposition despite maintained transgene expression in aged animals and, for animals with Tau deposits, distinctions were noted even within each subline. Three classes of rostral deposition in the cortex, hippocampus and striatum accounted for 75% of pathology-positive mice yet the mean ages of mice scored as class I, II or III were not significantly different and, hence, did not fit with a predictable progression from one class to another defined by chronological age. Two other patterns of Tau deposition designated as classes IV and V, occurred in caudal structures. Other pathology-positive Tg mice of similar age not falling within classes I-V presented with focal accumulations in additional caudal neuroanatomical areas including the locus coeruleus. Electron microscopy revealed that brains of Classes I, II and IV animals all exhibit straight filaments, but with coiled filaments and occasional twisted filaments apparent in Class I. Most strikingly, Class I, II and IV animals presented with distinct western blot signatures after trypsin digestion of sarkosyl-insoluble Tau. CONCLUSIONS: Qualitative variations in the neuroanatomy of Tau deposition in genetically constrained slow models of primary Tauopathy establish that non-synchronous, focal events contribute to the pathogenic process. Phenotypic diversity in these models suggests a potential parallel to the phenotypic variation seen in P301L patients.


Assuntos
Encéfalo/patologia , Tauopatias/patologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Tauopatias/genética , Proteínas tau/genética
12.
J Biol Chem ; 291(42): 21945-21955, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27563063

RESUMO

The prion protein (PrPC) has been suggested to operate as a scaffold/receptor protein in neurons, participating in both physiological and pathological associated events. PrPC, laminin, and metabotropic glutamate receptor 5 (mGluR5) form a protein complex on the plasma membrane that can trigger signaling pathways involved in neuronal differentiation. PrPC and mGluR5 are co-receptors also for ß-amyloid oligomers (AßOs) and have been shown to modulate toxicity and neuronal death in Alzheimer's disease. In the present work, we addressed the potential crosstalk between these two signaling pathways, laminin-PrPC-mGluR5 or AßO-PrPC-mGluR5, as well as their interplay. Herein, we demonstrated that an existing complex containing PrPC-mGluR5 has an important role in AßO binding and activity in neurons. A peptide mimicking the binding site of laminin onto PrPC (Ln-γ1) binds to PrPC and induces intracellular Ca2+ increase in neurons via the complex PrPC-mGluR5. Ln-γ1 promotes internalization of PrPC and mGluR5 and transiently decreases AßO biding to neurons; however, the peptide does not impact AßO toxicity. Given that mGluR5 is critical for toxic signaling by AßOs and in prion diseases, we tested whether mGlur5 knock-out mice would be susceptible to prion infection. Our results show mild, but significant, effects on disease progression, without affecting survival of mice after infection. These results suggest that PrPC-mGluR5 form a functional response unit by which multiple ligands can trigger signaling. We propose that trafficking of PrPC-mGluR5 may modulate signaling intensity by different PrPC ligands.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Neurônios/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas PrPC/metabolismo , Doenças Priônicas/metabolismo , Multimerização Proteica , Receptor de Glutamato Metabotrópico 5/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Animais , Cálcio/metabolismo , Sinalização do Cálcio/genética , Camundongos , Camundongos Knockout , Neurônios/patologia , Fragmentos de Peptídeos/genética , Proteínas PrPC/genética , Doenças Priônicas/genética , Doenças Priônicas/patologia , Transporte Proteico/genética , Receptor de Glutamato Metabotrópico 5/genética
13.
PLoS One ; 11(2): e0149410, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26894278

RESUMO

Pituitary Prolactin (PRL) and Growth Hormone (GH) are separately controlled and sub-serve different purposes. Surprisingly, we demonstrate that extra-pituitary expression in the adult mammalian central nervous system (CNS) is coordinated at mRNA and protein levels. However this was not a uniform effect within populations, such that wide inter-individual variation was superimposed on coordinate PRL/GH expression. Up to 44% of individuals in healthy cohorts of mice and rats showed protein levels above the norm and coordinated expression of PRL and GH transcripts above baseline occurred in the amygdala, frontal lobe and hippocampus of 10% of human subjects. High levels of PRL and GH present in post mortem tissue were often presaged by altered responses in fear conditioning and stress induced hyperthermia behavioral tests. Our data define a common phenotype polymorphism in healthy mammalian brains, and, given the pleiotropic effects known for circulating PRL and GH, further consequences of coordinated CNS over-expression may await discovery.


Assuntos
Encéfalo/metabolismo , Hormônio do Crescimento/biossíntese , Fenótipo , Prolactina/biossíntese , Animais , Feminino , Expressão Gênica , Hormônio do Crescimento/sangue , Hormônio do Crescimento/genética , Humanos , Masculino , Camundongos , Prolactina/sangue , Prolactina/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos
14.
J Virol ; 89(24): 12362-73, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26423950

RESUMO

UNLABELLED: Transmission of chronic wasting disease (CWD) between cervids is influenced by the primary structure of the host cellular prion protein (PrP(C)). In white-tailed deer, PRNP alleles encode the polymorphisms Q95 G96 (wild type [wt]), Q95 S96 (referred to as the S96 allele), and H95 G96 (referred to as the H95 allele), which differentially impact CWD progression. We hypothesize that the transmission of CWD prions between deer expressing different allotypes of PrP(C) modifies the contagious agent affecting disease spread. To evaluate the transmission properties of CWD prions derived experimentally from deer of four PRNP genotypes (wt/wt, S96/wt, H95/wt, or H95/S96), transgenic (tg) mice expressing the wt allele (tg33) or S96 allele (tg60) were challenged with these prion agents. Passage of deer CWD prions into tg33 mice resulted in 100% attack rates, with the CWD H95/S96 prions having significantly longer incubation periods. The disease signs and neuropathological and protease-resistant prion protein (PrP-res) profiles in infected tg33 mice were similar between groups, indicating that a prion strain (Wisc-1) common to all CWD inocula was amplified. In contrast, tg60 mice developed prion disease only when inoculated with the H95/wt and H95/S96 CWD allotypes. Serial passage in tg60 mice resulted in adaptation of a novel CWD strain (H95(+)) with distinct biological properties. Transmission of first-passage tg60CWD-H95(+) isolates into tg33 mice, however, elicited two prion disease presentations consistent with a mixture of strains associated with different PrP-res glycotypes. Our data indicate that H95-PRNP heterozygous deer accumulated two CWD strains whose emergence was dictated by the PrP(C) primary structure of the recipient host. These findings suggest that CWD transmission between cervids expressing distinct PrP(C) molecules results in the generation of novel CWD strains. IMPORTANCE: CWD prions are contagious among wild and captive cervids in North America and in South Korea. We present data linking the amino acid variant Q95H in white-tailed deer cellular prion protein (PrP(C)) to the emergence of a novel CWD strain (H95(+)). We show that, upon infection, deer expressing H95-PrP(C) molecules accumulated a mixture of CWD strains that selectively propagated depending on the PRNP genotype of the host in which they were passaged. Our study also demonstrates that mice expressing the deer S96-PRNP allele, previously shown to be resistant to various cervid prions, are susceptible to H95(+) CWD prions. The potential for the generation of novel strains raises the possibility of an expanded host range for CWD.


Assuntos
Genótipo , Proteínas PrPC/genética , Proteínas PrPC/metabolismo , Doença de Emaciação Crônica/genética , Doença de Emaciação Crônica/metabolismo , Animais , Cervos , Camundongos , Camundongos Transgênicos
15.
Prion ; 9(5): 376-93, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26516793

RESUMO

Biochemical similarities have been noted between the natively unstructured region of the cellular prion protein, PrP(C), and a GPI-linked glycoprotein called Shadoo (Sho); these proteins are encoded by the Prnp and Sprn genes, respectively. Both proteins are expressed in the adult central nervous system and they share overlapping partners, including each other, in interactome studies. As prior studies have ascribed neuroprotective properties to the N-terminal region of PrP(C), specifically the octarepeat region, we investigated Sho's neuroprotective properties. To this end we assessed Sho-null (Sprn(0/0)) and hemizygous (Sprn(0/+)) mice in the middle cerebral artery occlusion (MCAO) model versus wild type mice and also vs. transgene-rescued Sprn(0/0)-TgSprn mice. Sprn(0/0) mice had a tendency to greater fragility in reaching endpoint and deficits in parameters including infarct volume and neurogenesis, with a reciprocal trend noted in transgene-rescued mice; however these effects did not reach significance. Loss of both PrP(C) and Sho immunostaining occurred in parallel to neuronal loss on the ipsilateral side of MCAO-lesioned animals; while focal elevations in immunostaining in the penumbra region were sometimes evident for PrP(C), they were not noted for Sho. Our studies argue against discernible neuroprotective action of Sho in the genetic backgrounds used for this MCAO paradigm. Whether or not the positively charged N-terminal regions in Sho and PrP(C) fulfil different roles in vivo remains to be determined.


Assuntos
Isquemia Encefálica/metabolismo , Proteínas Ligadas por GPI/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Príons/metabolismo , Animais , Isquemia Encefálica/genética , Proteínas Ligadas por GPI/genética , Infarto da Artéria Cerebral Média/genética , Camundongos , Príons/genética
16.
J Virol ; 89(12): 6287-93, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25855735

RESUMO

UNLABELLED: Prion diseases are characterized by conformational changes of a cellular prion protein (PrP(C)) into a ß-sheet-enriched and aggregated conformer (PrP(Sc)). Shadoo (Sho), a member of the prion protein family, is expressed in the central nervous system (CNS) and is highly conserved among vertebrates. On the basis of histoanatomical colocalization and sequence similarities, it is suspected that Sho and PrP may be functionally related. The downregulation of Sho expression during prion pathology and the direct interaction between Sho and PrP, as revealed by two-hybrid analysis, suggest a relationship between Sho and prion replication. Using biochemical and biophysical approaches, we demonstrate that Sho forms a 1:1 complex with full-length PrP with a dissociation constant in the micromolar range, and this interaction consequently modifies the PrP-folding pathway. Using a truncated PrP that mimics the C-terminal C1 fragment, an allosteric binding behavior with a Hill number of 4 was observed, suggesting that at least a tetramerization state occurs. A cell-based prion titration assay performed with different concentrations of Sho revealed an increase in the PrP(Sc) conversion rate in the presence of Sho. Collectively, our observations suggest that Sho can affect the prion replication process by (i) acting as a holdase and (ii) interfering with the dominant-negative inhibitor effect of the C1 fragment. IMPORTANCE: Since the inception of the prion theory, the search for a cofactor involved in the conversion process has been an active field of research. Although the PrP interactome presents a broad landscape, candidates corresponding to specific criteria for cofactors are currently missing. Here, we describe for the first time that Sho can affect PrP structural dynamics and therefore increase the prion conversion rate. A biochemical characterization of Sho-PrP indicates that Sho acts as an ATP-independent holdase.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Príons/metabolismo , Dobramento de Proteína , Animais , Proteínas Ligadas por GPI , Camundongos , Ligação Proteica , Multimerização Proteica , Técnicas do Sistema de Duplo-Híbrido
17.
EMBO Mol Med ; 7(3): 339-56, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25661904

RESUMO

The cellular prion protein (PrP(C)) comprises a natively unstructured N-terminal domain, including a metal-binding octarepeat region (OR) and a linker, followed by a C-terminal domain that misfolds to form PrP(S) (c) in Creutzfeldt-Jakob disease. PrP(C) ß-endoproteolysis to the C2 fragment allows PrP(S) (c) formation, while α-endoproteolysis blocks production. To examine the OR, we used structure-directed design to make novel alleles, 'S1' and 'S3', locking this region in extended or compact conformations, respectively. S1 and S3 PrP resembled WT PrP in supporting peripheral nerve myelination. Prion-infected S1 and S3 transgenic mice both accumulated similar low levels of PrP(S) (c) and infectious prion particles, but differed in their clinical presentation. Unexpectedly, S3 PrP overproduced C2 fragment in the brain by a mechanism distinct from metal-catalysed hydrolysis reported previously. OR flexibility is concluded to impact diverse biological endpoints; it is a salient variable in infectious disease paradigms and modulates how the levels of PrP(S) (c) and infectivity can either uncouple or engage to drive the onset of clinical disease.


Assuntos
Proteínas PrPC/química , Proteínas PrPC/metabolismo , Doenças Priônicas/patologia , Doenças Priônicas/fisiopatologia , Processamento de Proteína Pós-Traducional , Animais , Linhagem Celular , Análise Mutacional de DNA , Modelos Animais de Doenças , Histocitoquímica , Humanos , Camundongos Transgênicos , Microscopia , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Conformação Proteica , Proteólise
18.
Mol Neurodegener ; 8: 10, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23414597

RESUMO

BACKGROUND: P73 belongs to the p53 family of cell survival regulators with the corresponding locus Trp73 producing the N-terminally distinct isoforms, TAp73 and DeltaNp73. Recently, two studies have implicated the murine Trp73 in the modulation in phospho-tau accumulation in aged wild type mice and in young mice modeling Alzheimer's disease (AD) suggesting that Trp73, particularly the DeltaNp73 isoform, links the accumulation of amyloid peptides to the creation of neurofibrillary tangles (NFTs). Here, we reevaluated tau pathologies in the same TgCRND8 mouse model as the previous studies. RESULTS: Despite the use of the same animal models, our in vivo studies failed to demonstrate biochemical or histological evidence for misprocessing of tau in young compound Trp73+/- + TgCRND8 mice or in aged Trp73+/- mice analyzed at the ages reported previously, or older. Secondly, we analyzed an additional mouse model where the DeltaNp73 was specifically deleted and confirmed a lack of impact of the DeltaNp73 allele, either in heterozygous or homozygous form, upon tau pathology in aged mice. Lastly, we also examined human TP73 for single nucleotide polymorphisms (SNPs) and/or copy number variants in a meta-analysis of 10 AD genome-wide association datasets. No SNPs reached significance after correction for multiple testing and no duplications/deletions in TP73 were found in 549 cases of AD and 544 non-demented controls. CONCLUSION: Our results fail to support P73 as a contributor to AD pathogenesis.


Assuntos
Doença de Alzheimer/genética , Proteínas de Ligação a DNA/genética , Predisposição Genética para Doença/genética , Proteínas Nucleares/genética , Proteínas Supressoras de Tumor/genética , Proteínas tau/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Animais , Benzofuranos , Western Blotting , Modelos Animais de Doenças , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Transgênicos , Polimorfismo de Nucleotídeo Único , Quinolinas , Proteína Tumoral p73
19.
PLoS One ; 7(12): e51305, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23236467

RESUMO

Genetic and biochemical mechanisms linking onset or progression of Alzheimer Disease and prion diseases have been lacking and/or controversial, and their etiologies are often considered independent. Here we document a novel, conserved and specific genetic interaction between the proteins that underlie these diseases, amyloid-ß precursor protein and prion protein, APP and PRP, respectively. Knockdown of APP and/or PRNP homologs in the zebrafish (appa, appb, prp1, and prp2) produces a dose-dependent phenotype characterized by systemic morphological defects, reduced cell adhesion and CNS cell death. This genetic interaction is surprisingly exclusive in that prp1 genetically interacts with zebrafish appa, but not with appb, and the zebrafish paralog prp2 fails to interact with appa. Intriguingly, appa & appb are largely redundant in early zebrafish development yet their abilities to rescue CNS cell death are differentially contingent on prp1 abundance. Delivery of human APP or mouse Prnp mRNAs rescue the phenotypes observed in app-prp-depleted zebrafish, highlighting the conserved nature of this interaction. Immunoprecipitation revealed that human APP and PrP(C) proteins can have a physical interaction. Our study reports a unique in vivo interdependence between APP and PRP loss-of-function, detailing a biochemical interaction that considerably expands the hypothesized roles of PRP in Alzheimer Disease.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Apoptose/fisiologia , Adesão Celular/fisiologia , Sistema Nervoso Central/embriologia , Fenótipo , Príons/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Apoptose/genética , Sistema Nervoso Central/citologia , Clonagem Molecular , Primers do DNA/genética , Técnicas de Silenciamento de Genes , Humanos , Imunoprecipitação , Camundongos , Morfolinos/genética , Mutagênese Sítio-Dirigida , Príons/genética , Peixe-Zebra
20.
Prion ; 6(5): 420-4, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22929230

RESUMO

Shadoo (Sho) is a brain glycoprotein with similarities to the unstructured region of PrP (C) . Frameshift alleles of the Sho gene, Sprn, are reported in variant Creutzfeldt-Jakob disease (vCJD) patients while Sprn mRNA knockdown in PrP-null (Prnp(0/0) ) embryos produces lethality, advancing Sho as the hypothetical PrP-like "pi" protein. Also, Sho levels are reduced as misfolded PrP accumulates during prion infections. To penetrate these issues we created Sprn null alleles (Daude et al., Proc. Natl. Acad. Sci USA 2012; 109(23): 9035-40). Results from the challenge of Sprn null and TgSprn transgenic mice with rodent-adapted prions coalesce to define downregulation of Sho as a "tracer" for the formation of misfolded PrP. However, classical BSE and rodent-adapted BSE isolates may behave differently, as they do for other facets of the pathogenic process, and this intriguing variation warrants closer scrutiny. With regards to physiological function, double knockout mice (Sprn(0/0) /Prnp(0/0) ) mice survived to over 600 d of age. This suggests that Sho is not pi, or, given the accumulating data for many activities for PrP (C) , that the pi hypothesis invoking a discrete signaling pathway to maintain neuronal viability is no longer tenable.


Assuntos
Proteínas do Tecido Nervoso/genética , Príons/genética , Animais , Proteínas Ligadas por GPI , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Proteínas Priônicas , Príons/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA