Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Nat Commun ; 15(1): 8895, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39406723

RESUMO

Unfolded protein response (UPR) is a central stress response pathway that is hijacked by tumor cells for their survival. Here, we find that IRE1α signaling, one of the canonical UPR arms, is increased in prostate cancer (PCa) patient tumors. Genetic or small molecule inhibition of IRE1α in syngeneic mouse PCa models and an orthotopic model decreases tumor growth. IRE1α ablation in cancer cells potentiates interferon responses and activates immune system related pathways in the tumor microenvironment (TME). Single-cell RNA-sequencing analysis reveals that targeting IRE1α in cancer cells reduces tumor-associated macrophage abundance. Consistently, the small molecule IRE1α inhibitor MKC8866, currently in clinical trials, reprograms the TME and enhances anti-PD-1 therapy. Our findings show that IRE1α signaling not only promotes cancer cell growth and survival but also interferes with anti-tumor immunity in the TME. Thus, targeting IRE1α can be a promising approach for improving anti-PD-1 immunotherapy in PCa.


Assuntos
Endorribonucleases , Neoplasias da Próstata , Proteínas Serina-Treonina Quinases , Microambiente Tumoral , Resposta a Proteínas não Dobradas , Microambiente Tumoral/imunologia , Masculino , Animais , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/tratamento farmacológico , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Endorribonucleases/metabolismo , Endorribonucleases/genética , Humanos , Camundongos , Linhagem Celular Tumoral , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Resposta a Proteínas não Dobradas/imunologia , Transdução de Sinais , Imunoterapia/métodos , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Camundongos Endogâmicos C57BL , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo
2.
EMBO Mol Med ; 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39406935

RESUMO

Glycosaminoglycans are often deprioritized as targets for synthetic immunotherapy due to the complexity of glyco-epitopes and limited options for obtaining specific subtype binding. Solid tumors express proteoglycans that are modified with oncofetal chondroitin sulfate (CS), a modification normally restricted to the placenta. Here, we report the design and functionality of transient chimeric antigen receptor (CAR) T cells with selectivity to oncofetal CS. Following expression in T cells, the CAR could be "armed" with recombinant VAR2CSA lectins (rVAR2) to target tumor cells expressing oncofetal CS. While unarmed CAR T cells remained inactive in the presence of target cells, VAR2-armed CAR T cells displayed robust activation and the ability to eliminate diverse tumor cell types in vitro. Cytotoxicity of the CAR T cells was proportional to the concentration of rVAR2 available to the CAR, offering a potential molecular handle to finetune CAR T cell activity. In vivo, armed CAR T cells rapidly targeted bladder tumors and increased the survival of tumor-bearing mice. Thus, our work indicates that cancer-restricted glycosaminoglycans may be exploited as potential targets for CAR T cell therapy.

3.
Epigenomics ; 16(17): 1129-1132, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39225130

RESUMO

Neuroendocrine prostate cancer (NEPC) is a rare and aggressive subtype of prostate cancer (PCa), emerging from advanced treatments and characterized by loss of androgen receptor (AR) signaling and neuroendocrine features, leading to rapid progression and treatment resistance. The third symposium on treatment-induced NEPC, held from 21 to 23 June 2024, at Harrison Hot Springs Resort, BC, Canada, united leading global researchers and clinicians. Sponsored by the Vancouver Prostate Centre (VPC), Canadian Institute of Health Research, Prostate Cancer Foundation Canada and Pharma Planter Inc, the event focused on the latest NEPC research and innovative treatment strategies. Co-chaired by Drs. Yuzhuo Wang and Martin Gleave, the symposium featured sessions on NEPC's historical context, molecular pathways, epigenetic regulation and the role of the tumor microenvironment and metabolism in its progression. Keynotes from experts like Dr. Himisha Beltran and Dr. Martin Gleave highlighted the complexity of NEPC. The Emerging Talent session showcased new research, pointing to the future of NEPC treatment. The symposium concluded with a consensus on the need for early detection, targeted therapies and personalized medicine to effectively combat NEPC, emphasizing the importance of global collaboration in advancing NEPC understanding and treatment.


Assuntos
Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/terapia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Carcinoma Neuroendócrino/genética , Carcinoma Neuroendócrino/terapia , Carcinoma Neuroendócrino/patologia , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Microambiente Tumoral , Epigênese Genética , Tumores Neuroendócrinos/terapia , Tumores Neuroendócrinos/genética
4.
Nat Commun ; 15(1): 7553, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39215044

RESUMO

Molecular similarities between embryonic and malignant cells can be exploited to target tumors through specific signatures absent in healthy adult tissues. One such embryonic signature tumors express is oncofetal chondroitin sulfate (ofCS), which supports disease progression and dissemination in cancer. Here, we report the identification and characterization of phage display-derived antibody fragments recognizing two distinct ofCS epitopes. These antibody fragments show binding affinity to ofCS in the low nanomolar range across a broad selection of solid tumor types in vitro and in vivo with minimal binding to normal, inflamed, or benign tumor tissues. Anti-ofCS antibody drug conjugates and bispecific immune cell engagers based on these targeting moieties disrupt tumor progression in animal models of human and murine cancers. Thus, anti-ofCS antibody fragments hold promise for the development of broadly effective therapeutic and diagnostic applications targeting human malignancies.


Assuntos
Sulfatos de Condroitina , Neoplasias , Animais , Humanos , Sulfatos de Condroitina/metabolismo , Sulfatos de Condroitina/imunologia , Camundongos , Neoplasias/imunologia , Neoplasias/terapia , Linhagem Celular Tumoral , Feminino , Epitopos/imunologia , Antígenos de Neoplasias/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto , Imunoconjugados/uso terapêutico , Biblioteca de Peptídeos
6.
Small ; 20(32): e2309495, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38511548

RESUMO

Photothermal therapy (PTT) refers to the use of plasmonic nanoparticles to convert electromagnetic radiation in the near infrared region to heat and kill tumor cells. Continuous wave lasers have been used clinically to induce PTT, but the treatment is associated with heat-induced tissue damage that limits usability. Here, the engineering and validation of a novel long-pulsed laser device able to induce selective and localized mild hyperthermia in tumors while reducing the heat affected zone and unwanted damage to surrounding tissue are reported. Long-pulsed PTT induces acute necrotic cell death in heat affected areas and the release of tumor associated antigens. This antigen release triggers maturation and stimulation of CD80/CD86 in dendritic cells in vivo that primes a cytotoxic T cell response. Accordingly, long-pulsed PTT enhances the therapeutic effects of immune checkpoint inhibition and increases survival of mice with bladder cancer. Combined, the data promote long-pulsed PTT as a safe and effective strategy for enhancing therapeutic responses to immune checkpoint inhibitors while minimizing unwanted tissue damage.


Assuntos
Imunoterapia , Terapia Fototérmica , Imunoterapia/métodos , Animais , Terapia Fototérmica/métodos , Camundongos , Neoplasias/terapia , Humanos , Linhagem Celular Tumoral
7.
ACS Nano ; 17(14): 13500-13509, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37435892

RESUMO

Malaria infected erythrocytes utilize the parasite protein VAR2CSA to bind to a unique presentation of chondroitin sulfate (CS) for their placenta specific tropism. Interestingly, many cancers express a similar form of CS, thereby termed oncofetal CS (ofCS). The distinctive tropism of malaria infected erythrocytes and the identification of oncofetal CS, therefore, represent potentially potent tools for cancer targeting. Here we describe an intriguing drug delivery platform that effectively mimics infected erythrocytes and their specificity for ofCS. We used a lipid catcher-tag conjugation system for the functionalization of erythrocyte membrane-coated drug carriers with recombinant VAR2CSA (rVAR2). We show that these malaria mimicking erythrocyte nanoparticles (MMENPs) loaded with docetaxel (DTX) specifically target and kill melanoma cells in vitro. We further demonstrate effective targeting and therapeutic efficacy in a xenografted melanoma model. These data thus provide a proof of concept for the use of a malaria biomimetic for tumor targeted drug delivery. Given the broad presentation of ofCS found across various types of malignancies, this biomimetic may therefore show potential as a broadly targeted cancer therapy against multiple tumor indications.


Assuntos
Malária Falciparum , Malária , Melanoma , Humanos , Antígenos de Protozoários/metabolismo , Biomimética , Sulfatos de Condroitina/metabolismo , Eritrócitos/metabolismo , Malária Falciparum/metabolismo , Plasmodium falciparum
8.
Clin Cancer Res ; 29(17): 3541-3553, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37279093

RESUMO

PURPOSE: Histone deacetylase (HDAC) inhibition has been shown to induce pharmacologic "BRCAness" in cancer cells with proficient DNA repair activity. This provides a rationale for exploring combination treatments with HDAC and PARP inhibition in cancer types that are insensitive to single-agent PARP inhibitors (PARPi). Here, we report the concept and characterization of a novel bifunctional PARPi (kt-3283) with dual activity toward PARP1/2 and HDAC enzymes in Ewing sarcoma cells. EXPERIMENTAL DESIGN: Inhibition of PARP1/2 and HDAC was measured using PARP1/2, HDAC activity, and PAR formation assays. Cytotoxicity was assessed by IncuCyte live cell imaging, CellTiter-Glo, and spheroid assays. Cell-cycle profiles were determined using propidium iodide staining and flow cytometry. DNA damage was examined by γH2AX expression and comet assay. Inhibition of metastatic potential by kt-3283 was evaluated via ex vivo pulmonary metastasis assay (PuMA). RESULTS: Compared with FDA-approved PARP (olaparib) and HDAC (vorinostat) inhibitors, kt-3283 displayed enhanced cytotoxicity in Ewing sarcoma models. The kt-3283-induced cytotoxicity was associated with strong S and G2-M cell-cycle arrest in nanomolar concentration range and elevated DNA damage as assessed by γH2AX tracking and comet assays. In three-dimensional spheroid models of Ewing sarcoma, kt-3283 showed efficacy in lower concentrations than olaparib and vorinostat, and kt-3283 inhibited colonization of Ewing sarcoma cells in the ex vivo PuMA model. CONCLUSIONS: Our data demonstrate the preclinical justification for studying the benefit of dual PARP and HDAC inhibition in the treatment of Ewing sarcoma in a clinical trial and provides proof-of-concept for a bifunctional single-molecule therapeutic strategy.


Assuntos
Puma , Sarcoma de Ewing , Animais , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Sarcoma de Ewing/patologia , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Vorinostat/uso terapêutico
9.
iScience ; 26(5): 106525, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37250326

RESUMO

Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor central in the regulation of key cellular processes including cell metabolism, tissue differentiation, and regulation of the immune system. PPARγ is required for normal differentiation of the urothelium and is thought to be an essential driver of the luminal subtype of bladder cancer. However, the molecular components that regulate PPARG gene expression in bladder cancer remain unclear. Here, we developed an endogenous PPARG reporter system in luminal bladder cancer cells and performed genome-wide CRISPR knockout screening to identify bona fide regulators of PPARG gene expression. Functional validation of the dataset confirmed GATA3, SPT6, and the cohesin complex components SMC1A, and RAD21, as permissive upstream positive regulators of PPARG gene expression in luminal bladder cancer. In summary, this work provides a resource and biological insights to aid our understanding of PPARG regulation in bladder cancer.

10.
J Exp Clin Cancer Res ; 42(1): 106, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37118819

RESUMO

BACKGROUND: The malaria protein VAR2CSA binds oncofetal chondroitin sulfate (ofCS), a unique chondroitin sulfate, expressed on almost all mammalian cancer cells. Previously, we produced a bispecific construct targeting ofCS and human T cells based on VAR2CSA and anti-CD3 (V-aCD3Hu). V-aCD3Hu showed efficacy against xenografted tumors in immunocompromised mice injected with human immune cells at the tumor site. However, the complex effects potentially exerted by the immune system as a result of the treatment cannot occur in mice without an immune system. Here we investigate the efficacy of V-aCD3Mu as a monotherapy and combined with immune checkpoint inhibitors in mice with a fully functional immune system. METHODS: We produced a bispecific construct consisting of a recombinant version of VAR2CSA coupled to an anti-murine CD3 single-chain variable fragment. Flow cytometry and ELISA were used to check cell binding capabilities and the therapeutic effect was evaluated in vitro in a killing assay. The in vivo efficacy of V-aCD3Mu was then investigated in mice with a functional immune system and established or primary syngeneic tumors in the immunologically "cold" 4T1 mammary carcinoma, B16-F10 malignant melanoma, the pancreatic KPC mouse model, and in the immunologically "hot" CT26 colon carcinoma model. RESULTS: V-aCD3Mu had efficacy as a monotherapy, and the combined treatment of V-aCD3Mu and an immune checkpoint inhibitor showed enhanced effects resulting in the complete elimination of solid tumors in the 4T1, B16-F10, and CT26 models. This anti-tumor effect was abscopal and accompanied by a systemic increase in memory and activated cytotoxic and helper T cells. The combined treatment also led to a higher percentage of memory T cells in the tumor without an increase in regulatory T cells. In addition, we observed partial protection against re-challenge in a melanoma model and full protection in a breast cancer model. CONCLUSIONS: Our findings suggest that V-aCD3Mu combined with an immune checkpoint inhibitor renders immunologically "cold" tumors "hot" and results in tumor elimination. Taken together, these data provide proof of concept for the further clinical development of V-aCD3 as a broad cancer therapy in combination with an immune checkpoint inhibitor.


Assuntos
Anticorpos Biespecíficos , Carcinoma , Melanoma Experimental , Humanos , Camundongos , Animais , Sulfatos de Condroitina/farmacologia , Sulfatos de Condroitina/metabolismo , Memória Imunológica , Inibidores de Checkpoint Imunológico , Melanoma Experimental/tratamento farmacológico , Carcinoma/tratamento farmacológico , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Linhagem Celular Tumoral , Mamíferos/metabolismo
11.
Proc Natl Acad Sci U S A ; 119(50): e2115328119, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36469776

RESUMO

Cancer mortality is exacerbated by late-stage diagnosis. Liquid biopsies based on genomic biomarkers can noninvasively diagnose cancers. However, validation studies have reported ~10% sensitivity to detect stage I cancer in a screening population and specific types, such as brain or genitourinary tumors, remain undetectable. We investigated urine and plasma free glycosaminoglycan profiles (GAGomes) as tumor metabolism biomarkers for multi-cancer early detection (MCED) of 14 cancer types using 2,064 samples from 1,260 cancer or healthy subjects. We observed widespread cancer-specific changes in biofluidic GAGomes recapitulated in an in vivo cancer progression model. We developed three machine learning models based on urine (Nurine = 220 cancer vs. 360 healthy) and plasma (Nplasma = 517 vs. 425) GAGomes that can detect any cancer with an area under the receiver operating characteristic curve of 0.83-0.93 with up to 62% sensitivity to stage I disease at 95% specificity. Undetected patients had a 39 to 50% lower risk of death. GAGomes predicted the putative cancer location with 89% accuracy. In a validation study on a screening-like population requiring ≥ 99% specificity, combined GAGomes predicted any cancer type with poor prognosis within 18 months with 43% sensitivity (21% in stage I; N = 121 and 49 cases). Overall, GAGomes appeared to be powerful MCED metabolic biomarkers, potentially doubling the number of stage I cancers detectable using genomic biomarkers.


Assuntos
Glicosaminoglicanos , Neoplasias , Humanos , Biomarcadores Tumorais/genética , Biópsia Líquida , Detecção Precoce de Câncer , Neoplasias/diagnóstico
12.
Nat Commun ; 13(1): 6059, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36229487

RESUMO

Extracellular matrix (ECM) elasticity is perceived by cells via focal adhesion structures, which transduce mechanical cues into chemical signalling to conform cell behavior. Although the contribution of ECM compliance to the control of cell migration or division is extensively studied, little is reported regarding infectious processes. We study this phenomenon with the extraintestinal Escherichia coli pathogen UTI89. We show that UTI89 takes advantage, via its CNF1 toxin, of integrin mechanoactivation to trigger its invasion into cells. We identify the HACE1 E3 ligase-interacting protein Optineurin (OPTN) as a protein regulated by ECM stiffness. Functional analysis establishes a role of OPTN in bacterial invasion and integrin mechanical coupling and for stimulation of HACE1 E3 ligase activity towards the Rac1 GTPase. Consistent with a role of OPTN in cell mechanics, OPTN knockdown cells display defective integrin-mediated traction force buildup, associated with limited cellular invasion by UTI89. Nevertheless, OPTN knockdown cells display strong mechanochemical adhesion signalling, enhanced Rac1 activation and increased cyclin D1 translation, together with enhanced cell proliferation independent of ECM stiffness. Together, our data ascribe a new function to OPTN in mechanobiology.


Assuntos
Ciclina D1 , Integrinas , Divisão Celular , Ciclina D1/metabolismo , Integrinas/metabolismo , Mecanotransdução Celular/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proteínas rac1 de Ligação ao GTP/metabolismo
13.
Nat Commun ; 13(1): 4760, 2022 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-35963852

RESUMO

Lineage plasticity of prostate cancer is associated with resistance to androgen receptor (AR) pathway inhibition (ARPI) and supported by a reactive tumor microenvironment. Here we show that changes in chondroitin sulfate (CS), a major glycosaminoglycan component of the tumor cell glycocalyx and extracellular matrix, is AR-regulated and promotes the adaptive progression of castration-resistant prostate cancer (CRPC) after ARPI. AR directly represses transcription of the 4-O-sulfotransferase gene CHST11 under basal androgen conditions, maintaining steady-state CS in prostate adenocarcinomas. When AR signaling is inhibited by ARPI or lost during progression to non-AR-driven CRPC as a consequence of lineage plasticity, CHST11 expression is unleashed, leading to elevated 4-O-sulfated chondroitin levels. Inhibition of the tumor cell CS glycocalyx delays CRPC progression, and impairs growth and motility of prostate cancer after ARPI. Thus, a reactive CS glycocalyx supports adaptive survival and treatment resistance after ARPI, representing a therapeutic opportunity in patients with advanced prostate cancer.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Androgênios , Sulfatos de Condroitina , Glicocálix/metabolismo , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Transdução de Sinais , Microambiente Tumoral
15.
Sci Rep ; 12(1): 3075, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35197518

RESUMO

Proteoglycans are proteins that are modified with glycosaminoglycan chains. Chondroitin sulfate proteoglycans (CSPGs) are currently being exploited as targets for drug-delivery in various cancer indications, however basic knowledge on how CSPGs are internalized in tumor cells is lacking. In this study we took advantage of a recombinant CSPG-binding lectin VAR2CSA (rVAR2) to track internalization and cell fate of CSPGs in tumor cells. We found that rVAR2 is internalized into cancer cells via multiple internalization mechanisms after initial docking on cell surface CSPGs. Regardless of the internalization pathway used, CSPG-bound rVAR2 was trafficked to the early endosomes in an energy-dependent manner but not further transported to the lysosomal compartment. Instead, internalized CSPG-bound rVAR2 proteins were secreted with exosomes to the extracellular environment in a strictly chondroitin sulfate-dependent manner. In summary, our work describes the cell fate of rVAR2 proteins in tumor cells after initial binding to CSPGs, which can be further used to inform development of rVAR2-drug conjugates and other therapeutics targeting CSPGs.


Assuntos
Proteoglicanas de Sulfatos de Condroitina/metabolismo , Lectinas/metabolismo , Neoplasias/metabolismo , Transporte Proteico , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Endossomos/metabolismo , Exossomos/metabolismo , Humanos , Ligação Proteica , Proteínas Recombinantes/metabolismo
16.
Sci Adv ; 7(51): eabh0562, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34919436

RESUMO

Alternative polyadenylation of mRNA has important but poorly understood roles in development and cancer. Activating mutations in the Ras oncogene are common drivers of many human cancers. From a screen for enhancers of activated Ras (let-60) in Caenorhabditis elegans, we identified cfim-1, a subunit of the alternative polyadenylation machinery. Ablation of cfim-1 increased penetrance of the multivulva phenotype in let-60/Ras gain-of-function (gf) mutants. Depletion of the human cfim-1 ortholog CFIm25/NUDT21 in cancer cells with KRAS mutations increased their migration and stimulated an epithelial-to-mesenchymal transition. CFIm25-depleted cells and cfim-1 mutants displayed biased placement of poly(A) tails to more proximal sites in many conserved transcripts. Functional analysis of these transcripts identified the multidrug resistance protein mrp-5/ABCC1 as a previously unidentified regulator of C. elegans vulva development and cell migration in human cells through alternative 3'UTR usage. Our observations demonstrate a conserved functional role for alternative polyadenylation in oncogenic Ras function.

17.
Blood Cancer Discov ; 2(6): 648-665, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34778803

RESUMO

Chimeric antigen receptor (CAR) T cells hold promise for the treatment of acute myeloid leukemia (AML), but optimal targets remain to be defined. We demonstrate that CD93 CAR T cells engineered from a novel humanized CD93-specific binder potently kill AML in vitro and in vivo but spare hematopoietic stem and progenitor cells (HSPC). No toxicity is seen in murine models, but CD93 is expressed on human endothelial cells, and CD93 CAR T cells recognize and kill endothelial cell lines. We identify other AML CAR T-cell targets with overlapping expression on endothelial cells, especially in the context of proinflammatory cytokines. To address the challenge of endothelial-specific cross-reactivity, we provide proof of concept for NOT-gated CD93 CAR T cells that circumvent endothelial cell toxicity in a relevant model system. We also identify candidates for combinatorial targeting by profiling the transcriptome of AML and endothelial cells at baseline and after exposure to proinflammatory cytokines. SIGNIFICANCE: CD93 CAR T cells eliminate AML and spare HSPCs but exert on-target, off-tumor toxicity to endothelial cells. We show coexpression of other AML targets on endothelial cells, introduce a novel NOT-gated strategy to mitigate endothelial toxicity, and demonstrate use of high-dimensional transcriptomic profiling for rational design of combinatorial immunotherapies.See related commentary by Velasquez and Gottschalk, p. 559. This article is highlighted in the In This Issue feature, p. 549.


Assuntos
Imunoterapia Adotiva , Leucemia Mieloide Aguda , Animais , Linhagem Celular Tumoral , Células Endoteliais/patologia , Humanos , Imunoterapia Adotiva/métodos , Leucemia Mieloide Aguda/terapia , Camundongos , Linfócitos T
18.
Cancers (Basel) ; 13(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34503301

RESUMO

Broad-spectrum therapeutics in non-small cell lung cancer (NSCLC) are in demand. Most human solid tumors express proteoglycans modified with distinct oncofetal chondroitin sulfate (CS) chains that can be detected and targeted with recombinant VAR2CSA (rVAR2) proteins and rVAR2-derived therapeutics. Here, we investigated expression and targetability of oncofetal CS expression in human NSCLC. High oncofetal CS expression is associated with shorter disease-free survival and poor overall survival of clinically annotated stage I and II NSCLC patients (n = 493). Oncofetal CS qualifies as an independent prognosticator of NSCLC in males and smokers, and high oncofetal CS levels are more prevalent in EGFR/KRAS wild-type cases, as compared to mutation cases. NSCLC cell lines express oncofetal CS-modified proteoglycans that can be specifically detected and targeted by rVAR2 proteins in a CSA-dependent manner. Importantly, a novel VAR2-drug conjugate (VDC-MMAE) efficiently eliminates NSCLC cells in vitro and in vivo. In summary, oncofetal CS is a prognostic biomarker and an actionable glycosaminoglycan target in NSCLC.

19.
Cells ; 10(5)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065298

RESUMO

Cisplatin is a widely used antineoplastic agent, whose efficacy is limited by primary and acquired therapeutic resistance. Recently, a bladder cancer genome-wide CRISPR/Cas9 knock-out screen correlated cisplatin sensitivity to multiple genetic biomarkers. Among the screen's top hits was the HECT domain-containing ubiquitin E3 ligase (HUWE1). In this review, HUWE1 is postulated as a therapeutic response modulator, affecting the collision between platinum-DNA adducts and the replication fork, the primary cytotoxic action of platins. HUWE1 can alter the cytotoxic response to platins by targeting essential components of the DNA damage response including BRCA1, p53, and Mcl-1. Deficiency of HUWE1 could lead to enhanced DNA damage repair and a dysfunctional apoptotic apparatus, thereby inducing resistance to platins. Future research on the relationship between HUWE1 and platins could generate new mechanistic insights into therapy resistance. Ultimately, HUWE1 might serve as a clinical biomarker to tailor cancer treatment strategies, thereby improving cancer care and patient outcomes.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias/tratamento farmacológico , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
20.
Cancer Discov ; 11(11): 2884-2903, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34021002

RESUMO

Cancer cells must overcome anoikis (detachment-induced death) to successfully metastasize. Using proteomic screens, we found that distinct oncoproteins upregulate IL1 receptor accessory protein (IL1RAP) to suppress anoikis. IL1RAP is directly induced by oncogenic fusions of Ewing sarcoma, a highly metastatic childhood sarcoma. IL1RAP inactivation triggers anoikis and impedes metastatic dissemination of Ewing sarcoma cells. Mechanistically, IL1RAP binds the cell-surface system Xc - transporter to enhance exogenous cystine uptake, thereby replenishing cysteine and the glutathione antioxidant. Under cystine depletion, IL1RAP induces cystathionine gamma lyase (CTH) to activate the transsulfuration pathway for de novo cysteine synthesis. Therefore, IL1RAP maintains cyst(e)ine and glutathione pools, which are vital for redox homeostasis and anoikis resistance. IL1RAP is minimally expressed in pediatric and adult normal tissues, and human anti-IL1RAP antibodies induce potent antibody-dependent cellular cytotoxicity of Ewing sarcoma cells. Therefore, we define IL1RAP as a new cell-surface target in Ewing sarcoma, which is potentially exploitable for immunotherapy. SIGNIFICANCE: Here, we identify cell-surface protein IL1RAP as a key driver of metastasis in Ewing sarcoma, a highly aggressive childhood sarcoma. Minimal expression in pediatric and adult normal tissues nominates IL1RAP as a promising target for immunotherapy.See related commentary by Yoon and DeNicola, p. 2679.This article is highlighted in the In This Issue feature, p. 2659.


Assuntos
Anoikis , Proteína Acessória do Receptor de Interleucina-1 , Sarcoma de Ewing , Adulto , Linhagem Celular Tumoral , Criança , Humanos , Proteômica , Receptores de Interleucina-1 , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA