Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Sci Rep ; 13(1): 4707, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949082

RESUMO

Obesity is a negative prognosis factor for breast cancer. Yet, the biological mechanisms underlying this effect are still largely unknown. An emerging hypothesis is that the transfer of free fatty acids (FFA) between adipocytes and tumor cells might be altered under obese conditions, contributing to tumor progression. Currently there is a paucity of models to study human mammary adipocytes (M-Ads)-cancer crosstalk. As for other types of isolated white adipocytes, herein, we showed that human M-Ads die within 2-3 days by necrosis when grown in 2D. As an alternative, M-Ads were grown in a fibrin matrix, a 3D model that preserve their distribution, integrity and metabolic function for up to 5 days at physiological glucose concentrations (5 mM). Higher glucose concentrations frequently used in in vitro models promote lipogenesis during M-Ads culture, impairing their lipolytic function. Using transwell inserts, the matrix embedded adipocytes were cocultured with breast cancer cells. FFA transfer between M-Ads and cancer cells was observed, and this event was amplified by obesity. Together these data show that our 3D model is a new tool for studying the effect of M-Ads on tumor cells and beyond with all the components of the tumor microenvironment including the immune cells.


Assuntos
Adipócitos , Neoplasias da Mama , Ácidos Graxos não Esterificados , Glândulas Mamárias Humanas , Obesidade , Magreza , Técnicas de Cultura de Células em Três Dimensões , Adipócitos/metabolismo , Adipócitos/patologia , Cultura Primária de Células , Glândulas Mamárias Humanas/patologia , Neoplasias da Mama/patologia , Obesidade/metabolismo , Obesidade/patologia , Magreza/metabolismo , Magreza/patologia , Humanos , Células MDA-MB-231 , Ácidos Graxos não Esterificados/metabolismo , Prognóstico
2.
J Invest Dermatol ; 142(9): 2488-2498.e8, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35150661

RESUMO

Obesity is a recognized factor for increased risk and poor prognosis of many cancers, including melanoma. In this study, using genetically engineered mouse models of melanoma (NrasQ61K transgenic expression, associated or not with Cdkn2a heterozygous deletion), we show that obesity increases melanoma initiation and progression by supporting tumor growth and metastasis, thereby reducing survival. This effect is associated with a decrease in p16INK4A expression in tumors. Mechanistically, adipocytes downregulate p16INK4A in melanoma cells through ß-catenin-dependent regulation, which increases cell motility. Furthermore, ß-catenin is directly transferred from adipocytes to melanoma cells in extracellular vesicles, thus increasing its level and activity, which represses CDKN2A transcription. Adipocytes from individuals with obesity have a stronger effect than those from lean individuals, mainly owing to an increase in the number of vesicles secreted, thus increasing the amount of ß-catenin delivered to melanoma cells and, consequently, amplifying their effect. In conclusion, in this study, we reveal that adipocyte extracellular vesicles control p16INK4A expression in melanoma, which promotes tumor progression. This work expands our understanding of the cooperation between adipocytes and tumors, particularly in obesity.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina , Vesículas Extracelulares , Melanoma , Obesidade , Adipócitos/metabolismo , Animais , Inibidor p16 de Quinase Dependente de Ciclina/genética , Vesículas Extracelulares/metabolismo , Melanoma/genética , Melanoma/metabolismo , Camundongos , Obesidade/genética , Obesidade/metabolismo , beta Catenina/metabolismo
3.
EMBO J ; 39(3): e102525, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31919869

RESUMO

Extracellular vesicles are emerging key actors in adipocyte communication. Notably, small extracellular vesicles shed by adipocytes stimulate fatty acid oxidation and migration in melanoma cells and these effects are enhanced in obesity. However, the vesicular actors and cellular processes involved remain largely unknown. Here, we elucidate the mechanisms linking adipocyte extracellular vesicles to metabolic remodeling and cell migration. We show that adipocyte vesicles stimulate melanoma fatty acid oxidation by providing both enzymes and substrates. In obesity, the heightened effect of extracellular vesicles depends on increased transport of fatty acids, not fatty acid oxidation-related enzymes. These fatty acids, stored within lipid droplets in cancer cells, drive fatty acid oxidation upon being released by lipophagy. This increase in mitochondrial activity redistributes mitochondria to membrane protrusions of migrating cells, which is necessary to increase cell migration in the presence of adipocyte vesicles. Our results provide key insights into the role of extracellular vesicles in the metabolic cooperation that takes place between adipocytes and tumors with particular relevance to obesity.


Assuntos
Adipócitos/citologia , Vesículas Extracelulares/metabolismo , Ácidos Graxos/metabolismo , Melanoma/metabolismo , Obesidade/complicações , Células 3T3 , Adipócitos/metabolismo , Animais , Autofagia , Linhagem Celular Tumoral , Movimento Celular , Humanos , Metabolismo dos Lipídeos , Masculino , Camundongos , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Obesidade/metabolismo , Oxirredução
4.
Nanoscale ; 11(7): 3248-3260, 2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30706922

RESUMO

The development of drug delivery and imaging tools is a major challenge in human health, in particular in cancer pathologies. This work describes the optimization of a protein nanocontainer, belonging to the lectin protein family, for its use in epithelial cancer diagnosis and treatment. Indeed, it specifically targets a glycosidic marker, the T antigen, which is known to be characteristic of epithelial cancers. Its quaternary structure reveals a large hydrated inner cavity able to transport small therapeutic molecules. Optimization of the nanocontainer by site directed mutagenesis allowed controlling loading and release of confined drugs. Doxorubicin confinement was followed, both theoretically and experimentally, and provided a proof of concept for the use of this nanocontainer as a vectorization system. In OVCAR-3 cells, a human ovarian adenocarcinoma cell line that expresses the T antigen, the drug was observed to be delivered inside late endosomes/lysosomes. These results show that this new type of vectorization and imaging device opens new exciting perspectives in nano-theranostic approaches.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antígenos Virais de Tumores/metabolismo , Doxorrubicina , Sistemas de Liberação de Medicamentos , Proteínas Fúngicas , Lectinas , Nanoestruturas , Neoplasias Ovarianas/tratamento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Basidiomycota/genética , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Feminino , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/farmacologia , Humanos , Lectinas/química , Lectinas/genética , Lectinas/farmacologia , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia
5.
Breast Cancer Res ; 21(1): 7, 2019 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-30654824

RESUMO

INTRODUCTION: Clinical studies suggest that obesity, in addition to promoting breast cancer aggressiveness, is associated with a decrease in chemotherapy efficacy, although the mechanisms involved remain elusive. As chemotherapy is one of the main treatments for aggressive or metastatic breast cancer, we investigated whether adipocytes can mediate resistance to doxorubicin (DOX), one of the main drugs used to treat breast cancer, and the mechanisms associated. METHODS: We used a coculture system to grow breast cancer cells with in vitro differentiated adipocytes as well as primary mammary adipocytes isolated from lean and obese patients. Drug cellular accumulation, distribution, and efflux were studied by immunofluorescence, flow cytometry, and analysis of extracellular vesicles. Results were validated by immunohistochemistry in a series of lean and obese patients with cancer. RESULTS: Adipocytes differentiated in vitro promote DOX resistance (with cross-resistance to paclitaxel and 5-fluorouracil) in a large panel of human and murine breast cancer cell lines independently of their subtype. Subcellular distribution of DOX was altered in cocultivated cells with decreased nuclear accumulation of the drug associated with a localized accumulation in cytoplasmic vesicles, which then are expelled into the extracellular medium. The transport-associated major vault protein (MVP), whose expression was upregulated by adipocytes, mediated both processes. Coculture with human mammary adipocytes also induced chemoresistance in breast cancer cells (as well as the related MVP-induced DOX efflux) and their effect was amplified by obesity. Finally, in a series of human breast tumors, we observed a gradient of MVP expression, which was higher at the invasive front, where tumor cells are at close proximity to adipocytes, than in the tumor center, highlighting the clinical relevance of our results. High expression of MVP in these tumor cells is of particular interest since they are more likely to disseminate to give rise to chemoresistant metastases. CONCLUSIONS: Collectively, our study shows that adipocytes induce an MVP-related multidrug-resistant phenotype in breast cancer cells, which could contribute to obesity-related chemoresistance.


Assuntos
Adipócitos/metabolismo , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Obesidade/complicações , Partículas de Ribonucleoproteínas em Forma de Abóbada/metabolismo , Células 3T3 , Tecido Adiposo/citologia , Adulto , Idoso , Animais , Antineoplásicos/uso terapêutico , Mama/citologia , Mama/patologia , Mama/cirurgia , Neoplasias da Mama/patologia , Neoplasias da Mama/cirurgia , Linhagem Celular Tumoral , Técnicas de Cocultura , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Feminino , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Humanos , Mastectomia , Camundongos , Pessoa de Meia-Idade , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Cultura Primária de Células , RNA Interferente Pequeno/metabolismo , Partículas de Ribonucleoproteínas em Forma de Abóbada/genética
6.
Mol Cancer Res ; 17(3): 821-835, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30606769

RESUMO

Prostate gland is surrounded by periprostatic adipose tissue (PPAT), which is increasingly believed to play a paracrine role in prostate cancer progression. Our previous work demonstrates that adipocytes promote homing of prostate cancer cells to PPAT and that this effect is upregulated by obesity. Here, we show that once tumor cells have invaded PPAT (mimicked by an in vitro model of coculture), they establish a bidirectional crosstalk with adipocytes, which promotes tumor cell invasion. Indeed, tumor cells induce adipocyte lipolysis and the free fatty acids (FFA) released are taken up and stored by tumor cells. Incubation with exogenous lipids also stimulates tumor cell invasion, underlining the importance of lipid transfer in prostate cancer aggressiveness. Transferred FFAs (after coculture or exogenous lipid treatment) stimulate the expression of one isoform of the pro-oxidant enzyme NADPH oxidase, NOX5. NOX5 increases intracellular reactive oxygen species (ROS) that, in turn, activate a HIF1/MMP14 pathway, which is responsible for the increased tumor cell invasion. In obesity, tumor-surrounding adipocytes are more prone to activate the depicted signaling pathway and to induce tumor invasion. Finally, the expression of NOX5 and MMP14 is upregulated at the invasive front of human tumors where cancer cells are in close proximity to adipocytes and this process is amplified in obese patients, underlining the clinical relevance of our results. IMPLICATIONS: Our work emphasizes the key role of adjacent PPAT in prostate cancer dissemination and proposes new molecular targets for the treatment of obese patients exhibiting aggressive diseases.


Assuntos
Tecido Adiposo/fisiopatologia , Obesidade/complicações , Neoplasias da Próstata/etiologia , Animais , Técnicas de Cultura de Células , Humanos , Masculino , Camundongos , Estresse Oxidativo , Neoplasias da Próstata/patologia , Transfecção
7.
JCI Insight ; 2(4): e87489, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28239646

RESUMO

In breast cancer, a key feature of peritumoral adipocytes is their loss of lipid content observed both in vitro and in human tumors. The free fatty acids (FFAs), released by adipocytes after lipolysis induced by tumor secretions, are transferred and stored in tumor cells as triglycerides in lipid droplets. In tumor cell lines, we demonstrate that FFAs can be released over time from lipid droplets through an adipose triglyceride lipase-dependent (ATGL-dependent) lipolytic pathway. In vivo, ATGL is expressed in human tumors where its expression correlates with tumor aggressiveness and is upregulated by contact with adipocytes. The released FFAs are then used for fatty acid ß-oxidation (FAO), an active process in cancer but not normal breast epithelial cells, and regulated by coculture with adipocytes. However, in cocultivated cells, FAO is uncoupled from ATP production, leading to AMPK/acetyl-CoA carboxylase activation, a circle that maintains this state of metabolic remodeling. The increased invasive capacities of tumor cells induced by coculture are completely abrogated by inhibition of the coupled ATGL-dependent lipolysis/FAO pathways. These results show a complex metabolic symbiosis between tumor-surrounding adipocytes and cancer cells that stimulate their invasiveness, highlighting ATGL as a potential therapeutic target to impede breast cancer progression.


Assuntos
Adipócitos/metabolismo , Neoplasias da Mama/metabolismo , Carcinoma Ductal de Mama/metabolismo , Carcinoma Lobular/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Lipase/metabolismo , Lipólise , Acetil-CoA Carboxilase/metabolismo , Trifosfato de Adenosina/metabolismo , Adenilato Quinase/metabolismo , Idoso , Animais , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Carcinoma Lobular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Cocultura , Feminino , Humanos , Camundongos , Pessoa de Meia-Idade , Invasividade Neoplásica , Oxirredução , Triglicerídeos/metabolismo
8.
Cancer Res ; 76(14): 4051-7, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27216185

RESUMO

Malignant progression results from a dynamic cross-talk between stromal and cancer cells. Recent evidence suggests that this cross-talk is mediated to a significant extent by exosomes, nanovesicles secreted by most cell types and which allow the transfer of proteins, lipids, and nucleic acids between cells. Adipocytes are a major component of several tumor microenvironments, including that of invasive melanoma, where cells have migrated to the adipocyte-rich hypodermic layer of the skin. We show that adipocytes secrete exosomes in abundance, which are then taken up by tumor cells, leading to increased migration and invasion. Using mass spectrometry, we analyzed the proteome of adipocyte exosomes. Interestingly, these vesicles carry proteins implicated in fatty acid oxidation (FAO), a feature highly specific to adipocyte exosomes. We further show that, in the presence of adipocyte exosomes, FAO is increased in melanoma cells. Inhibition of this metabolic pathway completely abrogates the exosome-mediated increase in migration. Moreover, in obese mice and humans, both the number of exosomes secreted by adipocytes as well as their effect on FAO-dependent cell migration are amplified. These observations might in part explain why obese melanoma patients have a poorer prognosis than their nonobese counterparts. Cancer Res; 76(14); 4051-7. ©2016 AACR.


Assuntos
Adipócitos/fisiologia , Exossomos/fisiologia , Ácidos Graxos/metabolismo , Melanoma/patologia , Obesidade/complicações , Células 3T3 , Animais , Movimento Celular , Humanos , Masculino , Melanoma/etiologia , Melanoma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução
9.
Pigment Cell Melanoma Res ; 28(4): 464-75, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25950383

RESUMO

Exosomes are important mediators in cell-to-cell communication and, recently, their role in melanoma progression has been brought to light. Here, we characterized exosomes secreted by seven melanoma cell lines with varying degrees of aggressivity. Extensive proteomic analysis of their exosomes confirmed the presence of characteristic exosomal markers as well as melanoma-specific antigens and oncogenic proteins. Importantly, the protein composition differed among exosomes from different lines. Exosomes from aggressive cells contained specific proteins involved in cell motility, angiogenesis, and immune response, while these proteins were less abundant or absent in exosomes from less aggressive cells. Interestingly, when exposed to exosomes from metastatic lines, less aggressive cells increased their migratory capacities, likely due to transfer of pro-migratory exosomal proteins to recipient cells. Hence, this study shows that the specific protein composition of melanoma exosomes depends on the cells' aggressivity and suggests that exosomes influence the behavior of other tumor cells and their microenvironment.


Assuntos
Exossomos/metabolismo , Melanoma/metabolismo , Proteoma/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Humanos , Espectrometria de Massas , Metástase Neoplásica , Proteínas de Neoplasias/metabolismo , Proteômica
10.
Cancer Res ; 73(18): 5657-68, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23903958

RESUMO

Cancer-associated fibroblasts (CAF) comprise the majority of stromal cells in breast cancers, yet their precise origins and relative functional contributions to malignant progression remain uncertain. Local invasion leads to the proximity of cancer cells and adipocytes, which respond by phenotypical changes to generate fibroblast-like cells termed as adipocyte-derived fibroblasts (ADF) here. These cells exhibit enhanced secretion of fibronectin and collagen I, increased migratory/invasive abilities, and increased expression of the CAF marker FSP-1 but not α-SMA. Generation of the ADF phenotype depends on reactivation of the Wnt/ß-catenin pathway in response to Wnt3a secreted by tumor cells. Tumor cells cocultivated with ADFs in two-dimensional or spheroid culture display increased invasive capabilities. In clinical specimens of breast cancer, we confirmed the presence of this new stromal subpopulation. By defining a new stromal cell population, our results offer new opportunities for stroma-targeted therapies in breast cancer.


Assuntos
Adipócitos/patologia , Neoplasias da Mama/patologia , Fibroblastos/patologia , Esferoides Celulares/patologia , Células Estromais/patologia , Microambiente Tumoral , Adipócitos/metabolismo , Animais , Western Blotting , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Feminino , Fibroblastos/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Imunofluorescência , Humanos , Técnicas Imunoenzimáticas , Camundongos , Camundongos Nus , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína A4 de Ligação a Cálcio da Família S100 , Proteínas S100/genética , Proteínas S100/metabolismo , Células Estromais/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
11.
Cancer Lett ; 324(2): 142-51, 2012 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-22643115

RESUMO

Among the many different cell types surrounding breast cancer cells, the most abundant are those that compose mammary adipose tissue, mainly mature adipocytes and progenitors. New accumulating recent evidences bring the tumor-surrounding adipose tissue into the light as a key component of breast cancer progression. The purpose of this review is to emphasize the role that adipose tissue might play by locally affecting breast cancer cell behavior and subsequent clinical consequences arising from this dialog. Two particular clinical aspects are addressed: obesity that was identified as an independent negative prognostic factor in breast cancer and the oncological safety of autologous fat transfer used in reconstructive surgery for breast cancer patients. This is preceded by the overall description of adipose tissue composition and function with special emphasis on the specificity of adipose depots and the species differences, key experimental aspects that need to be taken in account when cancer is considered.


Assuntos
Adipócitos/patologia , Tecido Adiposo Branco/patologia , Neoplasias da Mama/patologia , Células Epiteliais/patologia , Glândulas Mamárias Humanas/patologia , Comunicação Parácrina , Adipócitos/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Neoplasias da Mama/metabolismo , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Progressão da Doença , Células Epiteliais/metabolismo , Feminino , Humanos , Glândulas Mamárias Humanas/metabolismo , Obesidade/metabolismo , Obesidade/patologia , Transdução de Sinais
12.
J Biol Chem ; 287(16): 12736-49, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22375000

RESUMO

Neuropeptide FF (NPFF) interacts with specific receptors to modulate opioid functions in the central nervous system. On dissociated neurons and neuroblastoma cells (SH-SY5Y) transfected with NPFF receptors, NPFF acts as a functional antagonist of µ-opioid (MOP) receptors by attenuating the opioid-induced inhibition of calcium conductance. In the SH-SY5Y model, MOP and NPFF(2) receptors have been shown to heteromerize. To understand the molecular mechanism involved in the anti-opioid activity of NPFF, we have investigated the phosphorylation status of the MOP receptor using phospho-specific antibody and mass spectrometry. Similarly to direct opioid receptor stimulation, activation of the NPFF(2) receptor by [D-Tyr-1-(NMe)Phe-3]NPFF (1DMe), an analog of NPFF, induced the phosphorylation of Ser-377 of the human MOP receptor. This heterologous phosphorylation was unaffected by inhibition of second messenger-dependent kinases and, contrarily to homologous phosphorylation, was prevented by inactivation of G(i/o) proteins by pertussis toxin. Using siRNA knockdown we could demonstrate that 1DMe-induced Ser-377 cross-phosphorylation and MOP receptor loss of function were mediated by the G protein receptor kinase GRK2. In addition, mass spectrometric analysis revealed that the phosphorylation pattern of MOP receptors was qualitatively similar after treatment with the MOP agonist Tyr-D-Ala-Gly (NMe)-Phe-Gly-ol (DAMGO) or after treatment with the NPFF agonist 1DMe, but the level of multiple phosphorylation was more intense after DAMGO. Finally, NPFF(2) receptor activation was sufficient to recruit ß-arrestin2 to the MOP receptor but not to induce its internalization. These data show that NPFF-induced heterologous desensitization of MOP receptor signaling is mediated by GRK2 and could involve transphosphorylation within the heteromeric receptor complex.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Receptores de Neuropeptídeos/metabolismo , Receptores Opioides mu/metabolismo , Sequência de Aminoácidos , Analgésicos Opioides/farmacologia , Arrestinas/metabolismo , Linhagem Celular Tumoral , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Quinase 2 de Receptor Acoplado a Proteína G/genética , Técnicas de Silenciamento de Genes , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Humanos , Dados de Sequência Molecular , Neuroblastoma , Fosforilação/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores Opioides mu/agonistas , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Sistemas do Segundo Mensageiro/fisiologia , Serina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , beta-Arrestinas
13.
J Cell Sci ; 124(Pt 11): 1943-51, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21576354

RESUMO

DNA-dependent protein kinase (DNA-PK) is involved in DNA double-strand break (DSB) signalling and repair. We report that DNA-PK is activated by mild hypoxia conditions (0.1-1% O2) as shown by (1) its autophosphorylation on Ser2056, and (2) its mobilisation from a soluble nucleoplasmic compartment to a less extractable nuclear fraction. The recruitment of DNA-PK was not followed by activation and recruitment of the XRCC4-DNA-ligase-IV complex, suggesting that DSBs are not responsible for activation of DNA-PK. To unravel the mechanism of DNA-PK activation, we show that exposure of cells to trichostatin A, a histone deacetylase inhibitor, leads to DNA-PK autophosphorylation and relocalisation to DNA. Histone acetylation (mainly H3K14) is increased in hypoxic cells and treatment with anacardic acid, an inhibitor of histone acetyl transferase, prevented both histone modifications and DNA-PK activation in hypoxic conditions. Importantly, in using either silenced DNA-PK cells or cells exposed to a specific DNA-PK inhibitor (NU7026), we demonstrated that hypoxic DNA-PK activation positively regulates the key transcription factor HIF-1 and one subsequent target gene, GLUT1. Our results show that hypoxia initiates chromatin modification and consequently DNA-PK activation, which positively regulate cellular oxygen-sensing and oxygen-signalling pathways.


Assuntos
Cromatina/metabolismo , Proteína Quinase Ativada por DNA/metabolismo , Estresse Fisiológico , Acetilação , Adaptação Fisiológica , Aminoglicosídeos/farmacologia , Antígenos Nucleares/metabolismo , Hipóxia Celular , Linhagem Celular , Cromonas/farmacologia , Dano ao DNA , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Enedi-Inos/farmacologia , Ativação Enzimática , Transportador de Glucose Tipo 1/metabolismo , Histonas/metabolismo , Humanos , Ácidos Hidroxâmicos/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Autoantígeno Ku , Morfolinas/farmacologia , Fosforilação , Processamento de Proteína Pós-Traducional , Transdução de Sinais
14.
Cancer Res ; 71(7): 2455-65, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21459803

RESUMO

Early local tumor invasion in breast cancer results in a likely encounter between cancer cells and mature adipocytes, but the role of these fat cells in tumor progression remains unclear. We show that murine and human tumor cells cocultivated with mature adipocytes exhibit increased invasive capacities in vitro and in vivo, using an original two-dimensional coculture system. Likewise, adipocytes cultivated with cancer cells also exhibit an altered phenotype in terms of delipidation and decreased adipocyte markers associated with the occurrence of an activated state characterized by overexpression of proteases, including matrix metalloproteinase-11, and proinflammatory cytokines [interleukin (IL)-6, IL-1ß]. In the case of IL-6, we show that it plays a key role in the acquired proinvasive effect by tumor cells. Equally important, we confirm the presence of these modified adipocytes in human breast tumors by immunohistochemistry and quantitative PCR. Interestingly, the tumors of larger size and/or with lymph nodes involvement exhibit the higher levels of IL-6 in tumor surrounding adipocytes. Collectively, all our data provide in vitro and in vivo evidence that (i) invasive cancer cells dramatically impact surrounding adipocytes; (ii) peritumoral adipocytes exhibit a modified phenotype and specific biological features sufficient to be named cancer-associated adipocytes (CAA); and (iii) CAAs modify the cancer cell characteristics/phenotype leading to a more aggressive behavior. Our results strongly support the innovative concept that adipocytes participate in a highly complex vicious cycle orchestrated by cancer cells to promote tumor progression that might be amplified in obese patients.


Assuntos
Adipócitos/patologia , Neoplasias da Mama/patologia , Adipócitos/imunologia , Animais , Linhagem Celular Tumoral , Técnicas de Cocultura , Feminino , Humanos , Interleucina-6/biossíntese , Interleucina-6/imunologia , Neoplasias Mamárias Experimentais/patologia , Camundongos , Invasividade Neoplásica , Metástase Neoplásica , Fenótipo
15.
Mol Cell Biol ; 29(11): 3163-72, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19332554

RESUMO

Nonhomologous end-joining represents the major pathway used by human cells to repair DNA double-strand breaks. It relies on the XRCC4/DNA ligase IV complex to reseal DNA strands. Here we report the high-resolution crystal structure of human XRCC4 bound to the carboxy-terminal tandem BRCT repeat of DNA ligase IV. The structure differs from the homologous Saccharomyces cerevisiae complex and reveals an extensive DNA ligase IV binding interface formed by a helix-loop-helix structure within the inter-BRCT linker region, as well as significant interactions involving the second BRCT domain, which induces a kink in the tail region of XRCC4. We further demonstrate that interaction with the second BRCT domain of DNA ligase IV is necessary for stable binding to XRCC4 in cells, as well as to achieve efficient dominant-negative effects resulting in radiosensitization after ectopic overexpression of DNA ligase IV fragments in human fibroblasts. Together our findings provide unanticipated insight for understanding the physical and functional architecture of the nonhomologous end-joining ligation complex.


Assuntos
DNA Ligases/química , DNA Ligases/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Sequência de Aminoácidos , Ligação Competitiva , Linhagem Celular , Quebras de DNA de Cadeia Dupla , DNA Ligase Dependente de ATP , Enzimas Reparadoras do DNA/metabolismo , Regulação para Baixo , Humanos , Dados de Sequência Molecular , Ligação Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Tolerância a Radiação , Recombinação Genética/genética , Homologia Estrutural de Proteína , Relação Estrutura-Atividade
16.
EMBO Rep ; 8(6): 583-8, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17496833

RESUMO

Recent evidence shows that the DNA repair protein Ku is expressed on the surface of a subset of cells, where it contributes to adhesion and invasion processes, and also to viral or bacterial entry into target cells. Here, we show that Ku was expressed on the cell surface during activation of human monocytes and that its expression was independent of the conventional endoplasmic reticulum (ER)/Golgi secretory pathway. Ku inhibition, by blocking antibodies, decreases the migration of monocytes on fibronectin and laminin. On activation, nuclear Ku seems to move to the periphery of the cell and it shows a punctuate staining in the cytoplasm. The cytoplasmic distribution of Ku was shown to be unaltered by brefeldin A. Protease protection experiments show that Ku is contained within vesicles in activated monocytes. These data support a new role for Ku in the migration of monocytes into tissues, which depends on a tightly regulated pathway of intracellular redistribution.


Assuntos
Antígenos Nucleares/metabolismo , Movimento Celular , Proteínas de Ligação a DNA/metabolismo , Monócitos/citologia , Monócitos/metabolismo , Sinais Direcionadores de Proteínas , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/metabolismo , Humanos , Autoantígeno Ku , Fator Estimulador de Colônias de Macrófagos/farmacologia , Monócitos/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Vesículas Secretórias/efeitos dos fármacos , Vesículas Secretórias/metabolismo
17.
EMBO J ; 23(19): 3758-68, 2004 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-15385961

RESUMO

The Ku heterodimer (Ku70/Ku80) plays a central role in DNA double-strand breaks repair. Ku is also expressed on the cell surface of different types of cells where its function remains poorly understood. From a yeast two-hybrid screen, we have identified a specific interaction between the core region of Ku80 and the hemopexin domain of metalloproteinase 9 (MMP-9), a key enzyme involved in the degradation of extracellular matrix (ECM) components. Ku associates with MMP-9 on the surface of leukemic cells as demonstrated by co-immunoprecipitation experiments in membrane extracts and double-label immunofluorescence studies. In normal and tumoral migratory cells, Ku80 and MMP-9 colocalize at the periphery of leading edge of cells and cellular invasion of collagen IV matrices was blocked by antibodies directed against Ku70 or Ku80 subunits as well as by Ku80-specific antisense oligonucleotides. Our results indicate that Ku and MMP-9 interact at the cell membrane of highly invasive hematopoietic cells of normal and tumoral origin and document the unexpected importance of the membrane-associated form of Ku in the regulation of ECM remodelling.


Assuntos
Antígenos Nucleares/metabolismo , Membrana Celular/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Matriz Extracelular/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Antígenos Nucleares/genética , Movimento Celular , Colágeno Tipo IV/metabolismo , Proteínas de Ligação a DNA/genética , Imunofluorescência , Células-Tronco Hematopoéticas/metabolismo , Humanos , Imunoprecipitação , Autoantígeno Ku , Leucemia/metabolismo , Leucemia/patologia , Invasividade Neoplásica , Oligonucleotídeos Antissenso/farmacologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Células Tumorais Cultivadas , Técnicas do Sistema de Duplo-Híbrido
18.
J Immunol ; 169(5): 2274-83, 2002 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-12193692

RESUMO

Intracellular expression of Ab fragments has been efficiently used to inactivate therapeutic targets, oncogene products, and to induce viral resistance in plants. Ab fragments expressed in the appropriate cell compartment may also help to elucidate the functions of a protein of interest. We report in this study the successful targeting of the protein tyrosine kinase Syk in the RBL-2H3 rat basophilic leukemia cell line. We isolated from a phage display library human single-chain variable fragments (scFv) directed against the portion of Syk containing the Src homology 2 domains and the linker region that separates them. Among them, two scFv named G4G11 and G4E4 exhibited the best binding to Syk in vivo in a yeast two-hybrid selection system. Stable transfectants of RBL-2H3 cells expressing cytosolic G4G11 and G4E4 were established. Immunoprecipitation experiments showed that intracellular G4G11 and G4E4 bind to Syk, but do not inhibit the activation of Syk following FcepsilonRI aggregation, suggesting that the scFv do not affect the recruitment of Syk to the receptor. Nevertheless, FcepsilonRI-mediated calcium mobilization and the release of inflammatory mediators are inhibited, and are consistent with a defect in Bruton's tyrosine kinase and phospholipase C-gamma2 tyrosine phosphorylation and activation. Interestingly, FcepsilonRI-induced mitogen-activated protein kinase phosphorylation is not altered, suggesting that intracellular G4G11 and G4E4 do not prevent the coupling of Syk to the Ras pathway, but they selectively inhibit the pathway involving phospholipase C-gamma2 activation.


Assuntos
Precursores Enzimáticos/imunologia , Região Variável de Imunoglobulina/metabolismo , Líquido Intracelular/imunologia , Proteínas Tirosina Quinases/imunologia , Receptores de IgE/antagonistas & inibidores , Receptores de IgE/fisiologia , Transdução de Sinais/imunologia , Células Tumorais Cultivadas/imunologia , Domínios de Homologia de src/imunologia , Tirosina Quinase da Agamaglobulinemia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo , Sítios de Ligação de Anticorpos , Cálcio/antagonistas & inibidores , Cálcio/metabolismo , Ativação Enzimática/genética , Ativação Enzimática/imunologia , Precursores Enzimáticos/metabolismo , Humanos , Região Variável de Imunoglobulina/biossíntese , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/farmacologia , Líquido Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Dados de Sequência Molecular , Fosfolipase C gama , Fosforilação , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Ratos , Transdução de Sinais/genética , Quinase Syk , Transfecção , Células Tumorais Cultivadas/metabolismo , Fosfolipases Tipo C/antagonistas & inibidores , Fosfolipases Tipo C/metabolismo , Tirosina/antagonistas & inibidores , Tirosina/metabolismo , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA