Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomater Sci ; 9(9): 3390-3400, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33949363

RESUMO

Bone is mineralized tissue constituting the skeletal system, supporting and protecting the body's organs and tissues. In addition to such fundamental mechanical functions, bone also plays a remarkable role in sound conduction. From a mechanical standpoint, bone is a composite material consisting of minerals and collagen arranged in multiple hierarchical structures, with a complex anisotropic viscoelastic response, capable of transmitting and dissipating energy. At the molecular level, mineralized collagen fibrils are the basic building blocks of bone tissue, and hence, understanding bone properties down to fundamental tissue structures enables better identification of the mechanisms of structural failures and damage. While efforts have focused on the study of micro- and macro-scale viscoelasticity related to bone damage and healing based on creep, mineralized collagen has not been explored at the molecular level. We report a study that aims at systematically exploring the viscoelasticity of collagenous fibrils with different mineralization levels. We investigate the dynamic mechanical response upon cyclic and impulsive loads to observe the viscoelastic phenomena from either shear or extensional strains via molecular dynamics. We perform a sensitivity analysis with several key benchmarks: intrafibrillar mineralization percentage, hydration state, and external load amplitude. Our results show an increase of the dynamic moduli with an increase of the mineral percentage, pronounced at low strains. When intrafibrillar water is present, the material softens the elastic component, but considerably increases its viscosity, especially at high frequencies. This behavior is confirmed from the material response upon impulsive loads, in which water drastically reduces the relaxation times throughout the input velocity range by one order of magnitude, with respect to the dehydrated counterparts. We find that, upon transient loads, water has a major impact on the mechanics of mineralized fibrillar collagen, being able to improve the capability of the tissue to passively and effectively dissipate energy, especially after fast and high-amplitude external loads. Our study provides knowledge of bone mechanics in relation to pathologies deriving from dehydration or traumas. Moreover, these findings show the potential for being used in designing new bioinspired materials not limited to tissue engineering applications, in which passive mechanisms for dissipating energy can prevent structural failures.


Assuntos
Matriz Extracelular , Colágenos Fibrilares , Osso e Ossos , Colágeno , Viscosidade
2.
Phys Chem Chem Phys ; 23(5): 3496-3510, 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33511970

RESUMO

Simulations of coarse-grained network models have long been used to test theoretical predictions about rubber elasticity, while atomistic models are still largely unexplored. Here we devise a novel algorithm for the vulcanisation of united-atom poly(cis-1,4-butadiene), characterize the topology of the resulting networks and test their mechanical properties. We observe clear changes in the network structure when using slower vulcanisation, contrary to the traditional view that cross-linking simply freezes the melt configuration. Non-ideality of our networks reverberates on the distribution of strand length and on the strands deformation, which is highly non-affine, especially for short strands. Nevertheless, we do recover some of the trends observed on ideal bead-and-spring networks and controlled laboratory experiments, such as the linear relationships linking the degree of cross-linking and the density. We also compare different deformation methods and find step-equilibrium protocols to be more reliable. Regardless of the adopted method, it is advisable to precede the deformation by a pre-stretching cycle in order to release internal stresses accumulated during the vulcanisation.

3.
ACS Polym Au ; 1(3): 175-186, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36855656

RESUMO

Despite intense investigation, the mechanisms governing the mechanical reinforcement of polymers by dispersed nanoparticles have only been partially clarified. This is especially true for the ultimate properties of the nanocomposites, which depend on their resistance to fracture at large deformations. In this work, we adopt molecular dynamics simulations to investigate the mechanical properties of silica/polybutadiene rubber, using a quasi-atomistic model that allows a meaningful description of bond breaking and fracture over relatively large length scales. The behavior of large nanocomposite models is explored systematically by tuning the cross-linking, grafting densities, and nanoparticle concentration. The simulated stress-strain curves are interpreted by monitoring the breaking of chemical bonds and the formation of voids, up to complete rupture of the systems. We find that some chemical bonds, and particularly the S-S linkages at the rubber-nanoparticle interface, start breaking well before the appearance of macroscopic features of fracture and yield.

4.
Polymers (Basel) ; 12(7)2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32630822

RESUMO

We present a coarse-grained force field for modelling silica-polybutadiene interfaces and nanocomposites. The polymer, poly(cis-1,4-butadiene), is treated with a previously published united-atom model. Silica is treated as a rigid body, using one Si-centered superatom for each SiO 2 unit. The parameters for the cross-interaction between silica and the polymer are derived by Boltzmann inversion of the density oscillations at model interfaces, obtained from atomistic simulations of silica surfaces containing both Q 4 (hydrophobic) and Q 3 (silanol-containing, hydrophilic) silicon atoms. The performance of the model is tested in both equilibrium and non-equilibrium molecular dynamics simulations. We expect the present model to be useful for future large-scale simulations of rubber-silica nanocomposites.

5.
Phys Chem Chem Phys ; 21(2): 772-779, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30548037

RESUMO

We investigate via molecular dynamics simulations the behaviour of a polymer melt confined between surfaces with increasing spatial correlation (patchiness) of weakly and strongly interacting sites. Beyond a critical patchiness, we find a dramatic dynamic decoupling, characterized by a steep growth of the longest relaxation time and a constant diffusion coefficient. This arises from dynamic heterogeneities induced by the walls in the adjacent polymer layers, leading to the coexistence of fast and slow chain populations. Structural variations are also present, but they are not easy to detect. Our work opens the way to a better understanding of adhesion, friction, rubber reinforcement by fillers, and many other open issues involving the dynamics of polymeric materials on rough, chemically heterogeneous and possibly "dirty" surfaces.

6.
Faraday Discuss ; 199: 279-297, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28440374

RESUMO

The properties of ionic liquids can be modified by applying an external electrostatic potential, providing a route to control their performance in nanolubrication applications. Most computational studies to date have focused on the investigation of smooth surfaces. Real surfaces are generally inhomogeneous and feature roughness of different length scales. We report here a study of the possible effects that surface roughness may have on electrotunable lubricity with ionic liquids, performed here by means of non-equilibrium molecular dynamics simulations. In order to advance our understanding of the interplay of friction and substrate structure we investigate coarse grained models of ionic liquids confined in model surfaces with nanometer roughness. The friction is shown to depend on the roughness of the substrate and the direction of shear. For the investigated systems, the friction coefficient is found to increase with roughness. These results are in contrast with previous studies, where roughness induced reduction of friction was reported, and they highlight the strong sensitivity of the friction process to the structure of the surfaces. The friction force features a maximum at a specific surface charge density. This behaviour is reminiscent of the one reported in ionic liquids confined by flat surfaces, showing the generality of this physical effect in confined ionic liquids. We find that an increase of the substrate-liquid dispersion interactions shifts the maximum to lower surface charges. This effect opens a route to control electrotunable friction phenomena by tuning both the electrostatic potential and the composition of the confining surfaces.

7.
Ann Ital Chir ; 77(5): 441-2, 2006.
Artigo em Italiano | MEDLINE | ID: mdl-17345994

RESUMO

Acute appendicitis is a frequent abdominal pathology, more frequent in the childhood. The pathophysiology of acute appendicitis is obstruction of the appendix lumen and distension due to continued mucosal secretion. The second step is a rapid multiplication of resident bacteria, excretion of toxine and wall inflammation. Causes of this processes are different: in most of cases there is an hyperplasia of intrinsic lymphoid tissue (60%) or hard stool. Another cause may be foreign body. But is there a relationship between abdominal trauma and appendicitis?


Assuntos
Traumatismos Abdominais/complicações , Apendicite/etiologia , Apendicite/cirurgia , Ferimentos não Penetrantes/complicações , Criança , Feminino , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA