Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Elife ; 122024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393319

RESUMO

Intracellular levels of the amino acid aspartate are responsive to changes in metabolism in mammalian cells and can correspondingly alter cell function, highlighting the need for robust tools to measure aspartate abundance. However, comprehensive understanding of aspartate metabolism has been limited by the throughput, cost, and static nature of the mass spectrometry (MS)-based measurements that are typically employed to measure aspartate levels. To address these issues, we have developed a green fluorescent protein (GFP)-based sensor of aspartate (jAspSnFR3), where the fluorescence intensity corresponds to aspartate concentration. As a purified protein, the sensor has a 20-fold increase in fluorescence upon aspartate saturation, with dose-dependent fluorescence changes covering a physiologically relevant aspartate concentration range and no significant off target binding. Expressed in mammalian cell lines, sensor intensity correlated with aspartate levels measured by MS and could resolve temporal changes in intracellular aspartate from genetic, pharmacological, and nutritional manipulations. These data demonstrate the utility of jAspSnFR3 and highlight the opportunities it provides for temporally resolved and high-throughput applications of variables that affect aspartate levels.


Assuntos
Ácido Aspártico , Técnicas Biossensoriais , Animais , Ácido Aspártico/análise , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Linhagem Celular , Proteínas de Fluorescência Verde/metabolismo , Mamíferos/metabolismo
2.
bioRxiv ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-37577502

RESUMO

Current methods to quantify the fraction of aminoacylated tRNAs, also known as the tRNA charge, are limited by issues with either low throughput, precision, and/or accuracy. Here, we present an optimized charge tRNA-Seq method that combines previous developments with newly described approaches to establish a protocol for precise and accurate tRNA charge measurements. We verify that this protocol provides robust quantification of tRNA aminoacylation and we provide an end-to-end method that scales to hundreds of samples including software for data processing. Additionally, we show that this method supports measurements of relative tRNA expression levels and can be used to infer tRNA modifications through reverse transcription misincorporations, thereby supporting multipurpose applications in tRNA biology.

3.
bioRxiv ; 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37425831

RESUMO

Intracellular levels of the amino acid aspartate are responsive to changes in metabolism in mammalian cells and can correspondingly alter cell function, highlighting the need for robust tools to measure aspartate abundance. However, comprehensive understanding of aspartate metabolism has been limited by the throughput, cost, and static nature of the mass spectrometry based measurements that are typically employed to measure aspartate levels. To address these issues, we have developed a GFP-based sensor of aspartate (jAspSnFR3), where the fluorescence intensity corresponds to aspartate concentration. As a purified protein, the sensor has a 20-fold increase in fluorescence upon aspartate saturation, with dose dependent fluorescence changes covering a physiologically relevant aspartate concentration range and no significant off target binding. Expressed in mammalian cell lines, sensor intensity correlated with aspartate levels measured by mass spectrometry and could resolve temporal changes in intracellular aspartate from genetic, pharmacological, and nutritional manipulations. These data demonstrate the utility of jAspSnFR3 and highlight the opportunities it provides for temporally resolved and high throughput applications of variables that affect aspartate levels.

4.
Elife ; 122023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36883551

RESUMO

The oxidative tricarboxylic acid (TCA) cycle is a central mitochondrial pathway integrating catabolic conversions of NAD +to NADH and anabolic production of aspartate, a key amino acid for cell proliferation. Several TCA cycle components are implicated in tumorigenesis, including loss-of-function mutations in subunits of succinate dehydrogenase (SDH), also known as complex II of the electron transport chain (ETC), but mechanistic understanding of how proliferating cells tolerate the metabolic defects of SDH loss is still lacking. Here, we identify that SDH supports human cell proliferation through aspartate synthesis but, unlike other ETC impairments, the effects of SDH inhibition are not ameliorated by electron acceptor supplementation. Interestingly, we find aspartate production and cell proliferation are restored to SDH-impaired cells by concomitant inhibition of ETC complex I (CI). We determine that the benefits of CI inhibition in this context depend on decreasing mitochondrial NAD+/NADH, which drives SDH-independent aspartate production through pyruvate carboxylation and reductive carboxylation of glutamine. We also find that genetic loss or restoration of SDH selects for cells with concordant CI activity, establishing distinct modalities of mitochondrial metabolism for maintaining aspartate synthesis. These data therefore identify a metabolically beneficial mechanism for CI loss in proliferating cells and reveal how compartmentalized redox changes can impact cellular fitness.


Assuntos
Ácido Aspártico , Succinato Desidrogenase , Humanos , Succinato Desidrogenase/metabolismo , Ácido Aspártico/metabolismo , NAD/metabolismo , Ciclo do Ácido Cítrico/fisiologia , Oxirredução
5.
Front Cell Dev Biol ; 10: 836746, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35602601

RESUMO

Septins are a family of cytoskeletal proteins that regulate several important aspects of neuronal development. Septin 7 (Sept7) is enriched at the base of dendritic spines in excitatory neurons and mediates both spine formation and spine and synapse maturation. Phosphorylation at a conserved C-terminal tail residue of Sept7 mediates its translocation into the dendritic spine head to allow spine and synapse maturation. The mechanistic basis for postsynaptic stability and compartmentalization conferred by phosphorylated Sept7, however, is unclear. We report herein the proteomic identification of Sept7 phosphorylation-dependent neuronal interactors. Using Sept7 C-terminal phosphopeptide pulldown and biochemical assays, we show that the 14-3-3 family of proteins specifically interacts with Sept7 when phosphorylated at the T426 residue. Biochemically, we validate the interaction between Sept7 and 14-3-3 isoform gamma and show that 14-3-3 gamma is also enriched in the mature dendritic spine head. Furthermore, we demonstrate that interaction of phosphorylated Sept7 with 14-3-3 protects it from dephosphorylation, as expression of a 14-3-3 antagonist significantly decreases phosphorylated Sept7 in neurons. This study identifies 14-3-3 proteins as an important physiological regulator of Sept7 function in neuronal development.

6.
Cancer Discov ; 10(11): 1632-1634, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33139341

RESUMO

The chemotherapeutic enzyme asparaginase depletes systemic asparagine to kill cancers; however, its efficacy thus far is limited to a subset of leukemias. Hinze and colleagues identify that inhibiting proteasomal release of asparagine can sensitize colorectal cancers to asparagine depletion, providing a potential avenue to repurpose asparaginase for treatment of solid tumors.See related article by Hinze et al., p. 1690.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Antineoplásicos/farmacologia , Asparaginase/metabolismo , Asparagina , Humanos , Complexo de Endopeptidases do Proteassoma , Via de Sinalização Wnt
7.
Elife ; 82019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31487240

RESUMO

Probabilistic models of adaptive immune repertoire sequence distributions can be used to infer the expansion of immune cells in response to stimulus, differentiate genetic from environmental factors that determine repertoire sharing, and evaluate the suitability of various target immune sequences for stimulation via vaccination. Classically, these models are defined in terms of a probabilistic V(D)J recombination model which is sometimes combined with a selection model. In this paper we take a different approach, fitting variational autoencoder (VAE) models parameterized by deep neural networks to T cell receptor (TCR) repertoires. We show that simple VAE models can perform accurate cohort frequency estimation, learn the rules of VDJ recombination, and generalize well to unseen sequences. Further, we demonstrate that VAE-like models can distinguish between real sequences and sequences generated according to a recombination-selection model, and that many characteristics of VAE-generated sequences are similar to those of real sequences.


Assuntos
Imunidade Adaptativa , Variação Genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Recombinação Genética , Humanos , Modelos Genéticos
8.
J Am Chem Soc ; 141(28): 10948-10952, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31260282

RESUMO

Chemically induced dimerization (CID) systems, in which two proteins dimerize only in the presence of a small molecule ligand, offer versatile tools for small molecule sensing and actuation. However, only a handful of CID systems exist and creating one with the desired sensitivity and specificity for any given ligand is an unsolved problem. Here, we developed a combinatorial binders-enabled selection of CID (COMBINES-CID) method broadly applicable to different ligands. We demonstrated a proof-of-principle by generating nanobody-based heterodimerization systems induced by cannabidiol with high ligand selectivity. We applied the CID system to a sensitive sandwich enzyme-linked immunosorbent assay-like assay of cannabidiol in body fluids with a detection limit of ∼0.25 ng/mL. COMBINES-CID provides an efficient, cost-effective solution for expanding the biosensor toolkit for small molecule detection.


Assuntos
Canabidiol/análise , Engenharia de Proteínas , Proteínas/síntese química , Técnicas Biossensoriais , Dimerização , Ensaio de Imunoadsorção Enzimática , Humanos , Ligantes , Proteínas/química
9.
BMC Bioinformatics ; 19(Suppl 13): 57, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30717659

RESUMO

BACKGROUND: Scientific data and research results are being published at an unprecedented rate. Many database curators and researchers utilize data and information from the primary literature to populate databases, form hypotheses, or as the basis for analyses or validation of results. These efforts largely rely on manual literature surveys for collection of these data, and while querying the vast amounts of literature using keywords is enabled by repositories such as PubMed, filtering relevant articles from such query results can be a non-trivial and highly time consuming task. RESULTS: We here present a tool that enables users to perform classification of scientific literature by text mining-based classification of article abstracts. BioReader (Biomedical Research Article Distiller) is trained by uploading article corpora for two training categories - e.g. one positive and one negative for content of interest - as well as one corpus of abstracts to be classified and/or a search string to query PubMed for articles. The corpora are submitted as lists of PubMed IDs and the abstracts are automatically downloaded from PubMed, preprocessed, and the unclassified corpus is classified using the best performing classification algorithm out of ten implemented algorithms. CONCLUSION: BioReader supports data and information collection by implementing text mining-based classification of primary biomedical literature in a web interface, thus enabling curators and researchers to take advantage of the vast amounts of data and information in the published literature. BioReader outperforms existing tools with similar functionalities and expands the features used for mining literature in database curation efforts. The tool is freely available as a web service at http://www.cbs.dtu.dk/services/BioReader.


Assuntos
Pesquisa Biomédica , Mineração de Dados/métodos , Publicações , Algoritmos , Bases de Dados Factuais , Doença , Humanos , Fator de Impacto de Revistas , Fluxo de Trabalho
10.
Front Immunol ; 9: 2451, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30429847

RESUMO

B cell receptor sequences evolve during affinity maturation according to a Darwinian process of mutation and selection. Phylogenetic tools are used extensively to reconstruct ancestral sequences and phylogenetic trees from affinity-matured sequences. In addition to using general-purpose phylogenetic methods, researchers have developed new tools to accommodate the special features of B cell sequence evolution. However, the performance of classical phylogenetic techniques in the presence of B cell-specific features is not well understood, nor how much the newer generation of B cell specific tools represent an improvement over classical methods. In this paper we benchmark the performance of classical phylogenetic and new B cell-specific tools when applied to B cell receptor sequences simulated from a forward-time model of B cell receptor affinity maturation toward a mature receptor. We show that the currently used tools vary substantially in terms of tree structure and ancestral sequence inference accuracy. Furthermore, we show that there are still large performance gains to be achieved by modeling the special mutation process of B cell receptors. These conclusions are further strengthened with real data using the rules of isotype switching to count possible violations within each inferred phylogeny.


Assuntos
Linfócitos B/imunologia , Simulação por Computador , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/imunologia , Algoritmos , Linfócitos B/citologia , Benchmarking , Evolução Molecular , Humanos , Switching de Imunoglobulina/genética , Switching de Imunoglobulina/imunologia , Modelos Genéticos , Mutação/genética , Filogenia
11.
PLoS Comput Biol ; 14(10): e1006388, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30332400

RESUMO

B cells develop high affinity receptors during the course of affinity maturation, a cyclic process of mutation and selection. At the end of affinity maturation, a number of cells sharing the same ancestor (i.e. in the same "clonal family") are released from the germinal center; their amino acid frequency profile reflects the allowed and disallowed substitutions at each position. These clonal-family-specific frequency profiles, called "substitution profiles", are useful for studying the course of affinity maturation as well as for antibody engineering purposes. However, most often only a single sequence is recovered from each clonal family in a sequencing experiment, making it impossible to construct a clonal-family-specific substitution profile. Given the public release of many high-quality large B cell receptor datasets, one may ask whether it is possible to use such data in a prediction model for clonal-family-specific substitution profiles. In this paper, we present the method "Substitution Profiles Using Related Families" (SPURF), a penalized tensor regression framework that integrates information from a rich assemblage of datasets to predict the clonal-family-specific substitution profile for any single input sequence. Using this framework, we show that substitution profiles from similar clonal families can be leveraged together with simulated substitution profiles and germline gene sequence information to improve prediction. We fit this model on a large public dataset and validate the robustness of our approach on two external datasets. Furthermore, we provide a command-line tool in an open-source software package (https://github.com/krdav/SPURF) implementing these ideas and providing easy prediction using our pre-fit models.


Assuntos
Substituição de Aminoácidos/genética , Aminoácidos/metabolismo , Receptores de Antígenos de Linfócitos B/química , Receptores de Antígenos de Linfócitos B/metabolismo , Aminoácidos/genética , Animais , Linfócitos B/química , Linfócitos B/metabolismo , Células Clonais , Biologia Computacional , Bases de Dados de Proteínas , Humanos , Modelos Imunológicos , Receptores de Antígenos de Linfócitos B/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
12.
Toxins (Basel) ; 10(10)2018 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-30261694

RESUMO

Antivenom cross-reactivity has been investigated for decades to determine which antivenoms can be used to treat snakebite envenomings from different snake species. Traditionally, the methods used for analyzing cross-reactivity have been immunodiffusion, immunoblotting, enzyme-linked immunosorbent assay (ELISA), enzymatic assays, and in vivo neutralization studies. In recent years, new methods for determination of cross-reactivity have emerged, including surface plasmon resonance, antivenomics, and high-density peptide microarray technology. Antivenomics involves a top-down assessment of the toxin-binding capacities of antivenoms, whereas high-density peptide microarray technology may be harnessed to provide in-depth knowledge on which toxin epitopes are recognized by antivenoms. This review provides an overview of both the classical and new methods used to investigate antivenom cross-reactivity, the advantages and disadvantages of each method, and examples of studies using the methods. A special focus is given to antivenomics and high-density peptide microarray technology as these high-throughput methods have recently been introduced in this field and may enable more detailed assessments of antivenom cross-reactivity.


Assuntos
Antivenenos/imunologia , Venenos de Serpentes/imunologia , Animais , Reações Cruzadas , Peptídeos/imunologia
13.
Free Radic Biol Med ; 101: 143-153, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27742413

RESUMO

Although the role of oxidative stress factors and their regulation is well studied, the temporal dynamics of stress recovery is still poorly understood. In particular, measuring the kinetics of stress recovery in the first minutes after acute exposure provides a powerful technique for assessing the role of regulatory proteins or enzymes through the use of mutant backgrounds. This project endeavors to screen the temporal dynamics of intracellular oxidant levels in live cells as a function of gene deletion in the budding yeast, Saccharomyces cerevisiae. Using the detailed time dynamics of extra- and intra-cellular peroxide we have developed a mathematical model that describes two distinct kinetic processes, an initial rapid degradation in the first 10-20min followed by a slower process. Using this model, a qualitative comparison allowed us to assign the dependence of temporal events to genetic factors. Surprisingly, we found that the deletion of transcription factors Yap1p or Skn7p was sufficient to disrupt the establishment of the second degradation phase but not the initial phase. A better fundamental understanding of the role protective factors play in the recovery from oxidative stress may lead to strategies for protecting or sensitizing cell to this stress.


Assuntos
Deleção de Genes , Regulação Fúngica da Expressão Gênica , Peróxido de Hidrogênio/metabolismo , Modelos Estatísticos , Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Ensaios de Triagem em Larga Escala , Inativação Metabólica/genética , Cinética , Família Multigênica , Estresse Oxidativo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
14.
Nucleic Acids Res ; 44(D1): D38-47, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26538599

RESUMO

Life sciences are yielding huge data sets that underpin scientific discoveries fundamental to improvement in human health, agriculture and the environment. In support of these discoveries, a plethora of databases and tools are deployed, in technically complex and diverse implementations, across a spectrum of scientific disciplines. The corpus of documentation of these resources is fragmented across the Web, with much redundancy, and has lacked a common standard of information. The outcome is that scientists must often struggle to find, understand, compare and use the best resources for the task at hand.Here we present a community-driven curation effort, supported by ELIXIR-the European infrastructure for biological information-that aspires to a comprehensive and consistent registry of information about bioinformatics resources. The sustainable upkeep of this Tools and Data Services Registry is assured by a curation effort driven by and tailored to local needs, and shared amongst a network of engaged partners.As of November 2015, the registry includes 1785 resources, with depositions from 126 individual registrations including 52 institutional providers and 74 individuals. With community support, the registry can become a standard for dissemination of information about bioinformatics resources: we welcome everyone to join us in this common endeavour. The registry is freely available at https://bio.tools.


Assuntos
Biologia Computacional , Sistema de Registros , Curadoria de Dados , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA