RESUMO
Spinocerebellar ataxia type 1 (SCA1) is an adult-onset neurodegenerative disease caused by an expansion of the CAG repeat region of the ATXN1 gene. Currently there are no disease-modifying treatments; however, previous work has shown the potential of gene therapy, specifically RNAi, as a potential modality. Cas9 editing offers potential for these patients but has yet to be evaluated in SCA1 models. To test this, we first characterized the number of transgenes harbored in the common B05 mouse model of SCA1. Despite having five copies of the human mutant transgene, a 20% reduction of ATXN1 improved behavior deficits without increases in inflammatory markers. Importantly, the editing approach was confirmed in induced pluripotent stem cell (iPSC) neurons derived from patients with SCA1, promoting the translatability of the approach to patients.
RESUMO
Recombinant adeno-associated virus (rAAV) vectors are an effective and well-established tool in the growing gene therapy field, with five FDA-approved AAV-mediated gene therapies already on the market and numerous more in clinical trials. However, manufacturing rAAV vectors is an expensive, timely, and labor-intensive process that limits the commercial use of AAV-mediated gene therapies. To address this limitation, we screened producer cells for genes that could be targeted to increase rAAV yield. Specifically, we performed a CRISPR-based genome-wide knockout screen in HEK 293 cells using an antibody specific to intact AAV2 capsids coupled with flow cytometry to identify genes that modulate rAAV production. We discovered that the knockout of a group of heparan sulfate biosynthesis genes previously implicated in rAAV infectivity decreased rAAV production. Additionally, we identified several vesicular trafficking proteins for which knockout in HEK 293 cells increased rAAV yields. Our findings provide evidence that host proteins associated with viral infection may have also been co-opted for viral assembly and that the genetic makeup of viral producer cells can be manipulated to increase particle yield.
RESUMO
Heterozygous variants in SYNGAP1 and STXBP1 lead to distinct neurodevelopmental disorders caused by haploinsufficient levels of post-synaptic SYNGAP1 and pre-synaptic STXBP1, which are critical for normal synaptic function. While several gene-targeted therapeutic approaches have proven efficacious in vitro, these often target regions of the human gene that are not conserved in rodents, hindering the pre-clinical development of these compounds and their transition to the clinic. To overcome this limitation, here we generate and characterize Syngap1 and Stxbp1 humanized mouse models in which we replaced the mouse Syngap1 and Stxbp1 gene, respectively, with the human counterpart, including regulatory and non-coding regions. Fully humanized Syngap1 mice present normal viability and can be successfully crossed with currently available Syngap1 haploinsufficiency mouse models to generate Syngap1 humanized haploinsufficient mice. Stxbp1 mice were successfully humanized, yet exhibit impaired viability (particularly males) and reduced STXBP1 protein abundance. Mouse viability could be improved by outcrossing this model to other mouse strains, while Stxbp1 humanized females and hybrid mice can be used to evaluate target engagement of human-specific therapeutics. Overall, these humanized mouse models represent a broadly available tool to further pre-clinical therapeutic development for SYNGAP1 and STXBP1 disorders.
RESUMO
Recombinant adeno-associated virus (rAAV)-based gene therapies are expanding in their application. Despite progress in manufacturing, current analytical methods for product quantification and characterization remain largely unchanged. Although critical for product and process development, in-process testing, and batch release, current analytical methods are labor-intensive, costly, and hampered by extended turnaround times and low throughput. The field requires more efficient, cost-effective analytical techniques capable of handling large sample quantities to accelerate product and process development. Here, we evaluated Stunner from Unchained Labs for quantifying and characterizing rAAVs and compared it with established analytical methods. Stunner is a combinatorial analytic technology platform that interpolates ultraviolet-visible (UV-Vis) absorption with static and dynamic light scattering (SLS/DLS) analysis to determine capsid and genomic titer, empty and full capsid ratio, and assess vector size and polydispersity. The platform offers empirical measurements with minimal sample requirements. Upon testing hundreds of rAAV vectors, comprising various serotypes and transgenes, the data show a strong correlation with established analytical methods and exhibit high reproducibility and repeatability. Some analyses can be applied to in-process samples from different purification stages and processes, fulfilling the demand for rapid, high-throughput analysis during development. In sum, the pipeline presented streamlines small- and large-batch analytics.
RESUMO
Clinical application of CRISPR-Cas9 technology for large deletions of somatic mutations is inefficient, and methods to improve utility suffer from our inability to rapidly assess mono- vs. biallelic deletions. Here we establish a model system for investigating allelic heterogeneity at the single-cell level and identify indel scarring from non-simultaneous nuclease activity at gRNA cut sites as a major barrier to CRISPR-del efficacy both in vitro and in vivo. We show that non-simultaneous nuclease activity is partially prevented via restriction of CRISPR-Cas9 expression via inducible adeno-associated viruses (AAVs) or lipid nanoparticles (LNPs). Inducible AAV-based expression of CRISPR-del machinery significantly improved mono- and biallelic deletion frequency in vivo, supporting the use of the Xon cassette over traditional constitutively expressing AAV approaches. These data depicting improvements to deletions and insight into allelic heterogeneity after CRISPR-del will inform therapeutic approaches for phenotypes that require either large mono- or biallelic deletions, such as autosomal recessive diseases or where mutant allele-specific gRNAs are not readily available, or in situations where the targeted sequence for excision is located multiple times in a genome.
RESUMO
Epidemiological studies show that individuals who carry the relatively uncommon APOE ε2 allele rarely develop Alzheimer disease, and if they do, they have a later age of onset, milder clinical course, and less severe neuropathological findings than people without this allele. The contrast is especially stark when compared with the major genetic risk factor for Alzheimer disease, APOE ε4, which has an age of onset several decades earlier, a more aggressive clinical course and more severe neuropathological findings, especially in terms of the amount of amyloid deposition. Here, we demonstrate that brain exposure to APOE ε2 via a gene therapy approach, which bathes the entire cortical mantle in the gene product after transduction of the ependyma, reduces Aß plaque deposition, neurodegenerative synaptic loss, and, remarkably, reduces microglial activation in an APP/PS1 mouse model despite continued expression of human APOE ε4. This result suggests a promising protective effect of exogenous APOE ε2 and reveals a cell nonautonomous effect of the protein on microglial activation, which we show is similar to plaque-associated microglia in the brain of Alzheimer disease patients who inherit APOE ε2. These data increase the potential that an APOE ε2 therapeutic could be effective in Alzheimer disease, even in individuals born with the risky ε4 allele.
Assuntos
Doença de Alzheimer , Apolipoproteína E2 , Modelos Animais de Doenças , Terapia Genética , Camundongos Transgênicos , Microglia , Placa Amiloide , Animais , Doença de Alzheimer/terapia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/etiologia , Camundongos , Terapia Genética/métodos , Humanos , Apolipoproteína E2/genética , Apolipoproteína E2/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Microglia/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/terapia , Doenças Neuroinflamatórias/metabolismo , Peptídeos beta-Amiloides/metabolismo , BiomarcadoresRESUMO
Amyotrophic lateral sclerosis (ALS) is characterized by motor neuron death due to nuclear loss and cytoplasmic aggregation of the splice factor TDP-43. Pathologic TDP-43 associates with stress granules (SGs) and downregulating the SG-associated protein Ataxin-2 (Atxn2) using antisense oligonucleotides (ASO) prolongs survival in the TAR4/4 sporadic ALS mouse model, a strategy now in clinical trials. Here, we used AAV-mediated RNAi delivery to achieve lasting and targeted Atxn2 knockdown after a single injection. To achieve this, a novel AAV with improved transduction potency of our target cells was used to deliver Atxn2 -targeting miRNAs. Mouse dosing studies demonstrated 55% Atxn2 knockdown in frontal cortex and 25% knockdown throughout brainstem and spinal cord after intracerebroventricular injection at a dose 40x lower than used in other recent studies. In TAR4/4 mice, miAtxn2 treatment increased mean and median survival by 54% and 45% respectively (p<0.0003). Mice showed robust improvement across strength-related measures ranging from 24-75%. Interestingly, treated mice showed increased vertical activity above wildtype, suggesting unmasking of an FTD phenotype with improved strength. Histologically, lower motor neuron survival improved with a concomitant reduction in CNS inflammatory markers. Additionally, phosphorylated TDP-43 was reduced to wildtype levels. Bulk RNA sequencing revealed correction of 153 genes in the markedly dysregulated transcriptome of mutant mice, several of which are described in the human ALS literature. In slow progressing hemizygous mice, treatment rescued weight loss and improved gait at late time points. Cumulatively the data support the utility of AAV-mediated RNAi against Atxn2 as a robust and translatable treatment strategy for sporadic ALS.
RESUMO
Multiple sulfatase deficiency (MSD) is an ultra-rare, inherited lysosomal storage disease caused by mutations in the gene sulfatase modifying factor 1 (SUMF1). MSD is characterized by the functional deficiency of all sulfatase enzymes, leading to the storage of sulfated substrates including glycosaminoglycans (GAGs), sulfolipids, and steroid sulfates. Patients with MSD experience severe neurological impairment, hearing loss, organomegaly, corneal clouding, cardiac valve disease, dysostosis multiplex, contractures, and ichthyosis. Here, we generated a novel human model of MSD by reprogramming patient peripheral blood mononuclear cells to establish an MSD induced pluripotent stem cell (iPSC) line (SUMF1 p.A279V). We also generated an isogenic control iPSC line by correcting the pathogenic variant with CRISPR/Cas9 gene editing. We successfully differentiated these iPSC lines into neural progenitor cells (NPCs) and NGN2-induced neurons (NGN2-iN) to model the neuropathology of MSD. Mature neuronal cells exhibited decreased SUMF1 gene expression, increased lysosomal stress, impaired neurite outgrowth and maturation, reduced sulfatase activities, and GAG accumulation. Interestingly, MSD iPSCs and NPCs did not exhibit as severe of phenotypes, suggesting that as neurons differentiate and mature, they become more vulnerable to loss of SUMF1. In summary, we demonstrate that this human iPSC-derived neuronal model recapitulates the cellular and biochemical features of MSD. These cell models can be used as tools to further elucidate the mechanisms of MSD pathology and for the development of therapeutics.
Assuntos
Células-Tronco Pluripotentes Induzidas , Doença da Deficiência de Múltiplas Sulfatases , Humanos , Leucócitos Mononucleares/metabolismo , Neurônios/patologia , Sulfatases , Oxirredutases atuantes sobre Doadores de Grupo EnxofreRESUMO
Expansions of repeat DNA tracts cause >70 diseases, and ongoing expansions in brains exacerbate disease. During expansion mutations, single-stranded DNAs (ssDNAs) form slipped-DNAs. We find the ssDNA-binding complexes canonical replication protein A (RPA1, RPA2, and RPA3) and Alternative-RPA (RPA1, RPA3, and primate-specific RPA4) are upregulated in Huntington disease and spinocerebellar ataxia type 1 (SCA1) patient brains. Protein interactomes of RPA and Alt-RPA reveal unique and shared partners, including modifiers of CAG instability and disease presentation. RPA enhances in vitro melting, FAN1 excision, and repair of slipped-CAGs and protects against CAG expansions in human cells. RPA overexpression in SCA1 mouse brains ablates expansions, coincident with decreased ATXN1 aggregation, reduced brain DNA damage, improved neuron morphology, and rescued motor phenotypes. In contrast, Alt-RPA inhibits melting, FAN1 excision, and repair of slipped-CAGs and promotes CAG expansions. These findings suggest a functional interplay between the two RPAs where Alt-RPA may antagonistically offset RPA's suppression of disease-associated repeat expansions, which may extend to other DNA processes.
Assuntos
Proteína de Replicação A , Expansão das Repetições de Trinucleotídeos , Animais , Humanos , Camundongos , DNA/genética , Reparo de Erro de Pareamento de DNA , Doença de Huntington/genética , Proteínas/genética , Ataxias Espinocerebelares/genética , Proteína de Replicação A/metabolismoRESUMO
Recombinant adeno-associated viral vectors (rAAVs) are a promising strategy to treat neurodegenerative diseases because of their ability to infect non-dividing cells and confer long-term transgene expression. Despite an ever-growing library of capsid variants, widespread delivery of AAVs in the adult central nervous system remains a challenge. We have previously demonstrated successful distribution of secreted proteins by infection of the ependyma, a layer of post-mitotic epithelial cells lining the ventricles of the brain and central column of the spinal cord, and subsequent protein delivery via the cerebrospinal fluid (CSF). Here we define a functional ependyma promoter to enhance expression from this cell type. Using RNA sequencing on human autopsy samples, we identified disease- and age-independent ependyma gene signatures. Associated promoters were cloned and screened as libraries in mouse and rhesus macaque to reveal cross-species function of a human DNA-derived von Willebrand factor domain containing 3A (VWA3A) promoter. When tested in mice, our VWA3A promoter drove strong, ependyma-localized expression of eGFP and increased secreted ApoE protein levels in the CSF by 2-12× over the ubiquitous iCAG promoter.
RESUMO
Epidemiological studies show that individuals who carry the relatively uncommon APOE ε2 allele rarely develop Alzheimer disease, and if they do they have a later age of onset, milder clinical course, and less severe neuropathological findings than others with Alzheimer disease. The contrast is especially stark in comparison to the phenotype associated with the major genetic risk factor for Alzheimer disease, APOE ε4, which has an age of onset several decades earlier, as well as a more aggressive clinical course and notably more severe neuropathological findings, especially in terms of the amount of amyloid deposition. Even one APOE ε2 allele improves phenotype, but it is uncertain if that is due to the replacement of a more toxic allele by APOE ε2, or if APOE ε2 has a protective, neuro-modulatory effect. Here, we demonstrate that brain exposure to APOE2 via a gene therapy approach which bathes the entire cortical mantle in the gene product after transduction of the ependyma, rapidly ameliorates established Aß plaque deposition, neurodegenerative synaptic loss, and, remarkably, reduces microglial activation in an APP/PS1 mouse model despite continued expression of human APOE4. This result suggests a promising protective effect of exogenous APOE2, revealing a cell non-autonomous effect of the protein on microglial activation. We also show that plaque associated microglia in the brain of patients who inherit APOE2 similarly have less microglial reactivity to plaques. These data raise the potential that an APOE2 therapeutic could be effective in Alzheimer disease even in individuals born with the risk ε4 allele. One Sentence Summary: Introduction of ApoE2 using an AAV that transduces the ependymal cells of the ventricle causes a reduction in amyloid load and plaque associated synapse loss, and reduces neuroinflammation by modulating microglial responsiveness to plaques.
RESUMO
[This corrects the article DOI: 10.1016/j.xhgg.2022.100146.].
RESUMO
Alternative splicing of neuronal genes is controlled partly by the coordinated action of polypyrimidine tract binding proteins (PTBPs). While PTBP1 is ubiquitously expressed, PTBP2 is predominantly neuronal. Here, we define the PTBP2 footprint in the human transcriptome using brain tissue and human induced pluripotent stem cell-derived neurons (iPSC-neurons). We map PTBP2 binding sites, characterize PTBP2-dependent alternative splicing events, and identify novel PTBP2 targets including SYNGAP1, a synaptic gene whose loss-of-function leads to a complex neurodevelopmental disorder. We find that PTBP2 binding to SYNGAP1 mRNA promotes alternative splicing and nonsense-mediated decay, and that antisense oligonucleotides (ASOs) that disrupt PTBP binding redirect splicing and increase SYNGAP1 mRNA and protein expression. In SYNGAP1 haploinsufficient iPSC-neurons generated from two patients, we show that PTBP2-targeting ASOs partially restore SYNGAP1 expression. Our data comprehensively map PTBP2-dependent alternative splicing in human neurons and cerebral cortex, guiding development of novel therapeutic tools to benefit neurodevelopmental disorders.
Assuntos
Células-Tronco Pluripotentes Induzidas , Proteínas do Tecido Nervoso , Humanos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Splicing de RNA , Processamento Alternativo/genética , Encéfalo/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Ativadoras de ras GTPase/genética , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismoRESUMO
Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing is an emerging therapeutic modality that shows promise in Huntington's disease and spinocerebellar ataxia (SCA) mouse models. However, advancing CRISPR-based therapies requires methods to fully define in vivo editing outcomes. Here, we use polymerase-free, targeted long-read nanopore sequencing and evaluate single- and dual-gRNA AAV-CRISPR editing of human ATXN2 in transgenic mouse models of SCA type 2 (SCA2). Unbiased high sequencing coverage showed 10%-25% editing. Along with intended edits there was AAV integration, 1%-2% of which contained the entire AAV genome and were largely unmethylated. More than 150 kb deletions at target loci and rearrangements of the transgenic allele (1%) were also found. In contrast, PCR-based nanopore sequencing showed bias for partial AAV fragments and inverted terminal repeats (ITRs) and failed to detect full-length AAV. Cumulatively this work defines the spectrum of outcomes of CRISPR editing in mouse brain after AAV gene transfer using an unbiased long-read sequencing approach.
Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Camundongos , Animais , Humanos , Camundongos Transgênicos , Genoma , EncéfaloRESUMO
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by CAG trinucleotide repeat expansions in exon-1 of huntingtin (HTT). Currently, there is no cure for HD, and the clinical care of individuals with HD is focused on symptom management. Previously, we showed allele-specific deletion of the expanded HTT allele (mHTT) using CRISPR-Cas9 by targeting nearby (<10 kb) SNPs that created or eliminated a protospacer adjacent motif (PAM) near exon-1. Here, we comprehensively analyzed all potential PAM sites within a 10.4-kb genomic region flanking exon-1 of HTT in 983 individuals with HD using a multiplex targeted long-read sequencing approach on the Oxford Nanopore platform. We developed computational tools (NanoBinner and NanoRepeat) to de-multiplex the data, detect repeats, and phase the reads on the expanded or the wild-type HTT allele. One SNP common to 30% of individuals with HD of European ancestry emerged through this analysis, which was confirmed as a strong candidate for allele-specific deletion of the mHTT in human HD cell lines. In addition, up to 57% HD individuals may be candidates for allele-specific editing through combinatorial SNP targeting. Cumulatively, we provide a haplotype map of the region surrounding exon-1 of HTT in individuals affected with HD. Our workflow can be applied to other repeat expansion diseases to facilitate the design of guide RNAs for allele-specific gene editing.
Assuntos
Edição de Genes , Doenças Neurodegenerativas , Humanos , Alelos , Polimorfismo de Nucleotídeo Único/genética , Haplótipos/genéticaRESUMO
Huntington's Disease (HD) is a dominantly inherited neurodegenerative disease for which the major causes of mortality are neurodegeneration-associated aspiration pneumonia followed by cardiac failure. mTORC1 pathway perturbations are present in HD models and human tissues. Amelioration of mTORC1 deficits by genetic modulation improves disease phenotypes in HD models, is not a viable therapeutic strategy. Here, we assessed a novel small molecule mTORC1 pathway activator, NV-5297, for its improvement of the disease phenotypes in the N171-82Q HD mouse model. Oral dosing of NV-5297 over 6 weeks activated mTORC1, increased striatal volume, improved motor learning and heart contractility. Further, the heart contractility, heart fibrosis, and survival were improved in response to the cardiac stressor isoprenaline when compared to vehicle-treated mice. Cummulatively, these data support mTORC1 activation as a therapeutic target in HD and consolidates NV-5297 as a promising drug candidate for treating central and peripheral HD phenotypes and, more generally, mTORC1-deficit related diseases.
Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Animais , Modelos Animais de Doenças , Humanos , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , Doença de Huntington/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , Camundongos Transgênicos , FenótipoRESUMO
On August 18, 2021, the American Society of Gene and Cell Therapy (ASGCT) hosted a virtual roundtable on adeno-associated virus (AAV) integration, featuring leading experts in preclinical and clinical AAV gene therapy, to further contextualize and understand this phenomenon. Recombinant AAV (rAAV) vectors are used to develop therapies for many conditions given their ability to transduce multiple cell types, resulting in long-term expression of transgenes. Although most rAAV DNA typically remains episomal, some rAAV DNA becomes integrated into genomic DNA at a low frequency, and rAAV insertional mutagenesis has been shown to lead to tumorigenesis in neonatal mice. Currently, the risk of rAAV-mediated oncogenesis in humans is theoretical because no confirmed genotoxic events have been reported to date. However, because insertional mutagenesis has been reported in a small number of murine studies, there is a need to characterize this genotoxicity to inform research, regulatory needs, and patient care. The purpose of this white paper is to review the evidence of rAAV-related host genome integration in animal models and possible risks of insertional mutagenesis in patients. In addition, technical considerations, regulatory guidance, and bioethics are discussed.
Assuntos
Dependovirus , Vetores Genéticos , Animais , Dependovirus/genética , Vetores Genéticos/genética , Humanos , Camundongos , Mutagênese Insercional , Plasmídeos , Transgenes , Integração ViralRESUMO
Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurodegenerative disease caused by a (CAG) repeat expansion in the coding sequence of ATXN1. The primary mechanism of disease in SCA1 is toxic gain of function by polyglutamine-expanded mutant ATXN1 and is compounded by partial loss of wild-type function. Addressing both disease mechanisms, we have shown that virally expressed RNA interference targeting ATXN1 can both prevent and reverse disease phenotypes in SCA1 mice, and that overexpression of the ATXN1 homolog, ataxin 1-like (ATXN1L), improves disease readouts when delivered pre-symptomatically. Here, we combined these therapeutic approaches into two, dual component recombinant adeno-associated virus (rAAV) vectors and tested their ability to reverse disease in symptomatic SCA1 mice using behavior, pathological, and next-generation sequencing assays. Mice treated with vectors expressing human ATXN1L (hATXN1L) alone showed motor improvements and changes in gene expression that reflected increases in pro-development pathways. When hATN1L was combined with miS1, a previously validated microRNA targeting h ATXN1, there was added normalization of disease allele-induced changes in gene expression along with motor improvements. Our data show the additive nature of this two-component approach for a more effective SCA1 therapy.
RESUMO
We are in an emerging era of gene-based therapeutics with significant promise for rare genetic disorders. The potential is particularly significant for genetic central nervous system disorders that have begun to achieve Food and Drug Administration approval for select patient populations. This review summarizes the discussions and presentations of the National Institute of Mental Health-sponsored workshop "Gene-Based Therapeutics for Rare Genetic Neurodevelopmental Psychiatric Disorders," which was held in January 2021. Here, we distill the points raised regarding various precision medicine approaches related to neurodevelopmental and psychiatric disorders that may be amenable to gene-based therapies.