Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Pediatr Res ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565916

RESUMO

BACKGROUND: Infants with single ventricle heart disease (SVHD) suffer morbidity from insufficient pulmonary blood flow, which may be related to impaired arginine metabolism. No prior study has reported quantitative mapping of arginine metabolites to evaluate the relationship between circulating metabolite levels and outcomes. METHODS: Prospective cohort study of 75 SVHD cases peri-Stage 2 and 50 healthy controls. We targeted pre- and post-op absolute serum quantification of 9 key members of the arginine metabolism pathway by tandem mass spectrometry. Primary outcomes were length of stay (LOS) and post-Stage 2 hypoxemia. RESULTS: Pre-op cases showed alteration in 6 metabolites including decreased arginine and increased asymmetric dimethyl arginine (ADMA) levels compared to controls. Post-op cases demonstrated decreased arginine and citrulline levels persisting through 48 h. Adjusting for clinical variables, lower pre-op and 2 h post-op concentrations of multiple metabolites, including arginine and citrulline, were associated with longer post-op LOS (p < 0.01). Increased ADMA at 24 h was associated with greater post-op hypoxemia burden (p < 0.05). CONCLUSION: Arginine metabolism is impaired in interstage SVHD infants and is further deranged following Stage 2 palliation. Patients with greater metabolite alterations experience greater post-op morbidity. Decreased arginine metabolism may be an important driver of pathology in SVHD. IMPACT: Interstage infants with SVHD have significantly altered arginine-nitric oxide metabolism compared to healthy children with deficiency of multiple pathway intermediates persisting through 48 h post-Stage 2 palliation. After controlling for clinical covariates and classic catheterization-derived predictors of Stage 2 readiness, both lower pre-operation and lower post-operation circulating metabolite levels were associated with longer post-Stage 2 LOS while increased post-Stage 2 ADMA concentration was associated with greater post-op hypoxemia. Arginine metabolism mapping offers potential for development using personalized medicine strategies as a biomarker of Stage 2 readiness and therapeutic target to improve pulmonary vascular health in infants with SVHD.

3.
Front Pediatr ; 11: 1308700, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38143535

RESUMO

Introduction: Children with single ventricle heart disease (SVHD) experience significant morbidity across systems and time, with 70% of patients experiencing acute kidney injury, 33% neurodevelopmental impairment, 14% growth failure, and 5.5% of patients suffering necrotizing enterocolitis. Proteomics is a method to identify new biomarkers and mechanisms of injury in complex physiologic states. Methods: Infants with SVHD in the interstage period were compared to similar-age healthy controls. Serum samples were collected, stored at -80°C, and run on a panel of 1,500 proteins in single batch analysis (Somalogic Inc., CO). Partial Least Squares-Discriminant Analysis (PLS-DA) was used to compare the proteomic profile of cases and controls and t-tests to detect differences in individual proteins (FDR <0.05). Protein network analysis with functional enrichment was performed in STRING and Cytoscape. Results: PLS-DA readily discriminated between SVHD cases (n = 33) and controls (n = 24) based on their proteomic pattern alone (Accuracy = 0.96, R2 = 0.97, Q2 = 0.80). 568 proteins differed between groups (FDR <0.05). We identified 25 up-regulated functional clusters and 13 down-regulated. Active biological systems fell into six key groups: angiogenesis and cell proliferation/turnover, immune system activation and inflammation, altered metabolism, neural development, gastrointestinal system, and cardiac physiology and development. Conclusions: We report a clear differentiation in the circulating proteome of patients with SVHD and healthy controls with >500 circulating proteins distinguishing the groups. These proteomic data identify widespread protein dysregulation across multiple biologic systems with promising biological plausibility as drivers of SVHD morbidity.

4.
Sci Rep ; 13(1): 16318, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770592

RESUMO

Children with single ventricle heart disease (SVHD) experience morbidity due to inadequate pulmonary blood flow. Using proteomic screening, our group previously identified members of the matrix metalloproteinase (MMP), tissue inhibitor of metalloproteinase (TIMP), and fibroblast growth factor (FGF) families as potentially dysregulated in SVHD. No prior study has taken a targeted approach to mapping circulating levels of these protein families or their relationship to pulmonary vascular outcomes in SVHD. We performed a prospective cohort study of 70 SVHD infants pre-Stage 2 palliation and 24 healthy controls. We report targeted serum quantification of 39 proteins in the MMP, TIMP, and FGF families using the SomaScan platform. Clinical variables were extracted from the medical record. Twenty of 39 tested proteins (7/14 MMPs, 2/4 TIMPs, and 11/21 FGFs) differed between cases and controls. On single variable testing, 6 proteins and no clinical covariates were associated with both post-Stage 2 hypoxemia and length of stay. Multiple-protein modeling identified increased circulating MMP 7 and MMP 17, and decreased circulating MMP 8 and FGFR2 as most associated with post-Stage 2 hypoxemia; increased MMP 7 and TIMP 4 and decreased circulating MMP 1 and MMP 8 were most associated with post-operation length of stay. The MMP, TIMP, and FGF families are altered in SVHD. Pre-Stage 2 imbalance of extracellular matrix (ECM) proteins-increased MMP 7 and decreased MMP 8-was associated with multiple adverse post-operation outcomes. Maintenance of the ECM may be an important pathophysiologic driver of Stage 2 readiness in SVHD.


Assuntos
Cardiopatias , Metaloproteinase 8 da Matriz , Criança , Humanos , Lactente , Metaloproteinase 8 da Matriz/metabolismo , Metaloproteinase 7 da Matriz/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Estudos Prospectivos , Proteômica , Matriz Extracelular/metabolismo , Biomarcadores , Proteínas da Matriz Extracelular/metabolismo , Cardiopatias/metabolismo
6.
JACC Adv ; 2(1)2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36875009

RESUMO

BACKGROUND: Infants with SVHD experience morbidity related to pulmonary vascular inadequacy. Metabolomic analysis involves a systems biology approach to identifying novel biomarkers and pathways in complex diseases. The metabolome of infants with SVHD is not well understood and no prior study has evaluated the relationship between serum metabolite patterns and pulmonary vascular readiness for staged SVHD palliation. OBJECTIVES: The purpose of this study was to evaluate the circulating metabolome of interstage infants with single ventricle heart disease (SVHD) and determine whether metabolite levels were associated with pulmonary vascular inadequacy. METHODS: This was a prospective cohort study of 52 infants with SVHD undergoing Stage 2 palliation and 48 healthy infants. Targeted metabolomic phenotyping (175 metabolites) was performed by tandem mass spectrometry on SVHD pre-Stage 2, post-Stage 2, and control serum samples. Clinical variables were extracted from the medical record. RESULTS: Random forest analysis readily distinguished between cases and controls and preoperative and postoperative samples. Seventy-four of 175 metabolites differed between SVHD and controls. Twenty-seven of 39 metabolic pathways were altered including pentose phosphate and arginine metabolism. Seventy-one metabolites differed in SVHD patients between timepoints. Thirty-three of 39 pathways were altered postoperatively including arginine and tryptophan metabolism. We found trends toward increased preoperative methionine metabolites in patients with higher pulmonary vascular resistance and higher postoperative tryptophan metabolites in patients with greater postoperative hypoxemia. CONCLUSIONS: The circulating metabolome of interstage SVHD infants differs significantly from controls and is further disrupted after Stage 2. Several metabolites showed trends toward association with adverse outcomes. Metabolic dysregulation may be an important factor in early SVHD pathobiology.

7.
Dis Model Mech ; 16(5)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36426663

RESUMO

The intestinal microbiome is essential to human health and homeostasis, and is implicated in the pathophysiology of disease, including congenital heart disease and cardiac surgery. Improving the microbiome and reducing inflammatory metabolites may reduce systemic inflammation following cardiac surgery with cardiopulmonary bypass (CPB) to expedite recovery post-operatively. Limited research exists in this area and identifying animal models that can replicate changes in the human intestinal microbiome after CPB is necessary. We used a piglet model of CPB with two groups, CPB (n=5) and a control group with mechanical ventilation (n=7), to evaluate changes to the microbiome, intestinal barrier dysfunction and intestinal metabolites with inflammation after CPB. We identified significant changes to the microbiome, barrier dysfunction, intestinal short-chain fatty acids and eicosanoids, and elevated cytokines in the CPB/deep hypothermic circulatory arrest group compared to the control group at just 4 h after intervention. This piglet model of CPB replicates known human changes to intestinal flora and metabolite profiles, and can be used to evaluate gut interventions aimed at reducing downstream inflammation after cardiac surgery with CPB.


Assuntos
Ponte Cardiopulmonar , Cardiopatias Congênitas , Animais , Humanos , Suínos , Ponte Cardiopulmonar/efeitos adversos , Disbiose , Citocinas , Modelos Animais
9.
Pediatr Res ; 92(5): 1274-1281, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35681098

RESUMO

BACKGROUND: Oxylipins are metabolites derived from fatty acids such as arachidonic acid (AA) and are key mediators in inflammation, host defense, and tissue injury. Serum oxylipins increase in adults after cardiopulmonary bypass (CPB) but tissue-level changes are poorly defined. The objective of this study was to characterize pulmonary tissue oxylipins in an infant porcine model of CPB with deep hypothermic circulatory arrest (DHCA). METHODS: Infant pigs underwent CPB with DHCA. Controls received anesthesia only. Right upper and lower lobes of the lung underwent oxylipin analysis via liquid chromatography-tandem mass spectrometry. One-way ANOVA was utilized to assess differences in oxylipin concentrations across groups, followed by pairwise comparisons. RESULTS: AA and multiple AA metabolites via cytochrome P450 (CYP450), lipoxygenase (LOX), and cyclooxygenase (COX) pathways were significantly increased in the upper and lower lobe of pigs exposed to CPB/DHCA as compared to controls. Multiple prostaglandin metabolites produced via COX were also significantly elevated in the lower lobes of control animals. CONCLUSIONS: CPB/DHCA induces a significant increase in pulmonary tissue AA, with subsequent metabolism via COX, LOX, and CYP450 pathways. Interestingly, prostaglandins were also elevated in the lower lobes of the controls, suggesting a mechanism separate from CPB/DHCA. Future oxylipin studies are needed to better understand CPB-induced acute lung injury. IMPACT: CPB/DHCA and, to a lesser extent, lung region influence pulmonary tissue-level AA metabolite production. Inflammatory mediator AA metabolites have been noted in previous studies to increase following CPB; however, this is the first study to look at pulmonary tissue-level differences following CPB/DHCA. Increases in many AA metabolites, including LOX- and CYP450-derived products, were seen in both upper and lower lobe of piglets following CPB/DHCA. COX-derived prostaglandin metabolites were increased not only in CPB upper and lower lobe but also in mechanically ventilated control lower lobe, suggesting an additional, separate mechanism from CPB/DCHA.


Assuntos
Ponte Cardiopulmonar , Oxilipinas , Animais , Suínos , Ponte Cardiopulmonar/efeitos adversos , Pulmão , Inflamação , Prostaglandinas
10.
Am J Physiol Renal Physiol ; 323(1): F20-F32, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35532069

RESUMO

Acute kidney injury (AKI) is a common cause of morbidity after congenital heart disease surgery. Progress on diagnosis and therapy remains limited, however, in part due to poor mechanistic understanding and a lack of relevant translational models. Metabolomic approaches could help identify novel mechanisms of injury and potential therapeutic targets. In the present study, we used a piglet model of cardiopulmonary bypass with deep hypothermic circulatory arrest (CPB/DHCA) and targeted metabolic profiling of kidney tissue, urine, and serum to evaluate metabolic changes specific to animals with histological acute kidney injury. CPB/DHCA animals with acute kidney injury were compared with those without acute kidney injury and mechanically ventilated controls. Acute kidney injury occurred in 10 of 20 CPB/DHCA animals 4 h after CPB/DHCA and 0 of 7 control animals. Injured kidneys showed a distinct tissue metabolic profile compared with uninjured kidneys (R2 = 0.93, Q2 = 0.53), with evidence of dysregulated tryptophan and purine metabolism. Nine urine metabolites differed significantly in animals with acute kidney injury with a pattern suggestive of increased aerobic glycolysis. Dysregulated metabolites in kidney tissue and urine did not overlap. CPB/DHCA strongly affected the serum metabolic profile, with only one metabolite that differed significantly with acute kidney injury (pyroglutamic acid, a marker of oxidative stress). In conclusion, based on these findings, kidney tryptophan and purine metabolism are candidates for further mechanistic and therapeutic investigation. Urine biomarkers of aerobic glycolysis could help diagnose early acute kidney injury after CPB/DHCA and warrant further evaluation. The serum metabolites measured at this early time point did not strongly differentiate based on acute kidney injury.NEW & NOTEWORTHY This project explored the metabolic underpinnings of postoperative acute kidney injury (AKI) following pediatric cardiac surgery in a translationally relevant large animal model of cardiopulmonary bypass with deep hypothermic circulatory arrest. Here, we present novel evidence for dysregulated tryptophan catabolism and purine catabolism in kidney tissue and increased urinary glycolysis intermediates in animals who developed histological AKI. These pathways represent potential diagnostic and therapeutic targets for postoperative AKI in this high-risk population.


Assuntos
Injúria Renal Aguda , Procedimentos Cirúrgicos Cardíacos , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/etiologia , Animais , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Ponte Cardiopulmonar/efeitos adversos , Parada Circulatória Induzida por Hipotermia Profunda/efeitos adversos , Humanos , Rim , Purinas , Suínos , Triptofano
11.
J Am Heart Assoc ; 11(6): e024007, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35243904

RESUMO

Background Inadequate pulmonary vascular growth results in morbidity for many children with single-ventricle heart disease (SVHD). Endothelin 1 (ET1) is a potent vasoconstrictor and stimulator of pulmonary artery smooth muscle proliferation. Circulating ET1 levels and their association with outcomes have not been studied during early SVHD palliation. We aimed to define circulating levels of ET1 in patients with SVHD undergoing stage 2 palliation and evaluate their relationship to postoperative hypoxemia. We hypothesized that patients with SVHD with higher ET1 concentration would have a greater post-stage 2 hypoxemia. Methods and Results Prospective cohort study of 55 subjects with SVHD undergoing stage 2 palliation and 50 controls. Samples for ET1 analysis were collected at preoperation (systemic and pulmonary vein) and 2, 24, and 48 hours postoperation for cases and a single time point for controls. The primary outcome was percentage of first 48 postoperative hours with clinically significant hypoxemia (saturation, <70%). ET1 concentration was lower in preoperative cases than controls (2.2 versus 2.7 pg/mL; P=0.0015) and in the pulmonary vein than systemic vein (1.7 versus 2.2 pg/mL; P<0.001). ET1 level increased by 2 hours postoperation and trended back to baseline by 48 hours. Higher preoperative pulmonary vein ET1 and 2 hours postoperative ET1 were associated with larger hypoxemia burden (10.6% versus 2.7% [P=0.0081]; and 7.6% versus 3.2% [P=0.01], respectively). Multivariable testing demonstrated ET1 concentration and cardiopulmonary bypass time were associated with hypoxemia, whereas catheterization measurements and clinical variables were not. Conclusions Infants with SVHD with higher perioperative ET1 concentration experience more post-stage 2 hypoxemia. ET1 activity may be a modifiable risk factor of pulmonary vascular inadequacy for stage 2 palliation.


Assuntos
Endotelina-1 , Derivação Cardíaca Direita , Cardiopatias Congênitas , Coração Univentricular , Criança , Endotelina-1/sangue , Cardiopatias Congênitas/sangue , Cardiopatias Congênitas/cirurgia , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/cirurgia , Humanos , Hipóxia/sangue , Hipóxia/diagnóstico , Hipóxia/etiologia , Lactente , Período Pós-Operatório , Estudos Prospectivos , Resultado do Tratamento , Coração Univentricular/sangue , Coração Univentricular/cirurgia
12.
Metabolomics ; 17(10): 89, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34553313

RESUMO

INTRODUCTION: Acute lung injury is common following cardiopulmonary bypass and deep hypothermic circulatory arrest for congenital heart surgery with the most severe injury in the dorsocaudal lung. Metabolomics offers promise in deducing mechanisms of disease states, providing risk stratification, and understanding therapeutic responses in regards to CPB/DHCA related organ injury. OBJECTIVES: Using an infant porcine model, we sought to determine the individual and additive effects of CPB/DHCA and lung region on the metabolic fingerprint, metabolic pathways, and individual metabolites in lung tissue. METHODS: Twenty-seven infant piglets were divided into two groups: mechanical ventilation + CPB/DHCA (n = 20) and mechanical ventilation only (n = 7). Lung tissue was obtained from dorsocaudal and ventral regions. Targeted analysis of 235 metabolites was performed using HPLC/MS-MS. Data was analyzed using Principal Component Analysis (PCA), Partial Least Square Discriminant Analysis (PLS-DA), ANOVA, and pathway analysis. RESULTS: Profound metabolic differences were found in dorsocaudal compared to ventral lung zones by PCA and PLS-DA (R2 = 0.7; Q2 = 0.59; p < 0.0005). While overshadowed by the regional differences, some differences by exposure to CPB/DHCA were seen as well. Seventy-four metabolites differed among groups and pathway analysis revealed 20 differential metabolic pathways. CONCLUSION: Our results demonstrate significant metabolic disturbances between dorsocaudal and ventral lung regions during supine mechanical ventilation with or without CPB/DHCA. CPB/DHCA also leads to metabolic differences and may have additive effects to the regional disturbances. Most pathways driving this pathology are involved in energy metabolism and the metabolism of amino acids, carbohydrates, and reduction-oxidation pathways.


Assuntos
Ponte Cardiopulmonar , Pulmão , Animais , Humanos , Metaboloma , Metabolômica , Suínos
13.
Front Pediatr ; 9: 727571, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497787

RESUMO

Purpose: Fluid overload is a common post-operative issue in children following cardiac surgery and is associated with increased morbidity and mortality. There is currently no gold standard for evaluating fluid status. We sought to validate the use of point-of-care ultrasound to measure skin edema in infants and assess the intra- and inter-user variability. Methods: Prospective cohort study of neonates (≤30 d/o) and infants (31 d/o to 12 m/o) undergoing cardiac surgery and neonatal controls. Skin ultrasound was performed on four body sites at baseline and daily post-operatively through post-operative day (POD) 3. Subcutaneous tissue depth was manually measured. Intra- and inter-user variability was assessed using intraclass correlation coefficient (ICC). Results: Fifty control and 22 surgical subjects underwent skin ultrasound. There was no difference between baseline surgical and control neonates. Subcutaneous tissue increased in neonates starting POD 1 with minimal improvement by POD 3. In infants, this pattern was less pronounced with near resolution by POD 3. Intra-user variability was excellent (ICC 0.95). Inter-user variability was very good (ICC 0.82). Conclusion: Point-of-care skin ultrasound is a reproducible and reliable method to measure subcutaneous tissue in infants with and without congenital heart disease. Acute increases in subcutaneous tissue suggests development of skin edema, consistent with extravascular fluid overload. There is evidence of skin edema starting POD 1 in all subjects with no substantial improvement by POD 3 in neonates. Point-of-care ultrasound could be an objective way to measure extravascular fluid overload in infants. Further research is needed to determine how extravascular fluid overload correlates to clinical outcomes.

14.
J Am Heart Assoc ; 10(11): e019396, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34013742

RESUMO

Background Comparison of care among centers is currently limited to major end points, such as mortality, length of stay, or complication rates. Creating "care curves" and comparing individual elements of care over time may highlight modifiable differences in intensive care among centers. Methods and Results We performed an observational retrospective study at 5 centers in the United States to describe key elements of postoperative care following the stage 1 palliation. A consecutive sample of 502 infants undergoing stage 1 palliation between January 2009 and December 2018 were included. All electronic health record entries relating to mandatory mechanical ventilator rate, opioid administration, and fluid intake/outputs between postoperative days (POD) 0 to 28 were extracted from each institution's data warehouse. During the study period, 502 patients underwent stage 1 palliation among the 5 centers. Patients were weaned to a median mandatory mechanical ventilator rate of 10 breaths/minute by POD 4 at Center 5 but not until POD 7 to 8 at Centers 1 and 2. Opioid administration peaked on POD 2 with extreme variance (median 6.9 versus 1.6 mg/kg per day at Center 3 versus Center 2). Daily fluid balance trends were variable: on POD 3 Center 1 had a median fluid balance of -51 mL/kg per day, ranging between -34 to 19 mL/kg per day among remaining centers. Intercenter differences persist after adjusting for patient and surgical characteristics (P<0.001 for each end point). Conclusions It is possible to detail and compare individual elements of care over time that represent modifiable differences among centers, which persist even after adjusting for patient factors. Care curves may be used to guide collaborative quality improvement initiatives.


Assuntos
Cuidados Críticos/normas , Cuidados Paliativos/normas , Cuidados Pós-Operatórios/normas , Complicações Pós-Operatórias/terapia , Melhoria de Qualidade , Procedimentos Cirúrgicos Operatórios/efeitos adversos , Humanos , Incidência , Unidades de Terapia Intensiva/normas , Complicações Pós-Operatórias/epidemiologia , Estudos Retrospectivos , Fatores de Risco , Taxa de Sobrevida/tendências , Estados Unidos/epidemiologia
16.
Pediatr Nephrol ; 36(10): 3259-3269, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33954809

RESUMO

BACKGROUND: We sought to determine differences in the circulating metabolic profile of infants with or without acute kidney injury (AKI) following cardiothoracic surgery with cardiopulmonary bypass (CPB). METHODS: We performed a secondary analysis of preoperative and 24-h postoperative serum samples from infants ≤ 120 days old undergoing CPB. Metabolic profiling of the serum samples was performed by targeted analysis of 165 serum metabolites via tandem mass spectrometry. We then compared infants who did or did not develop AKI in the first 72 h postoperatively to determine global differences in the preoperative and 24-h metabolic profiles in addition to specific differences in individual metabolites. RESULTS: A total of 57 infants were included in the study. Six infants (11%) developed KDIGO stage 2/3 AKI and 13 (23%) developed stage 1 AKI. The preoperative metabolic profile did not differentiate between infants with or without AKI. Infants with severe AKI could be moderately distinguished from infants without AKI by their 24-h metabolic profile, while infants with stage 1 AKI segregated into two groups, overlapping with either the no AKI or severe AKI groups. Differences in these 24-h metabolic profiles were driven by 21 metabolites significant at an adjusted false discovery rate of < 0.05. Prominently altered pathways include purine, methionine, and kynurenine/nicotinamide metabolism. CONCLUSION: Moderate-to-severe AKI after infant cardiac surgery is associated with changes in the serum metabolome, including prominent changes to purine, methionine, and kynurenine/nicotinamide metabolism. A portion of infants with mild AKI demonstrated similar metabolic changes, suggesting a potential role for metabolic analysis in the evaluation of lower stage injury.


Assuntos
Injúria Renal Aguda , Procedimentos Cirúrgicos Cardíacos , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/etiologia , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Ponte Cardiopulmonar/efeitos adversos , Humanos , Lactente , Cinurenina , Metaboloma , Metionina , Niacinamida , Complicações Pós-Operatórias/etiologia , Purinas
17.
Transl Res ; 229: 24-37, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33045409

RESUMO

Despite significant morbidity among infants with single ventricle heart disease (SVHD), clinical monitoring is limited by poor understanding of the underlying pathobiology. Proteomics can identify novel biomarkers and important pathways in complex disease. No prior study has evaluated whether the proteome of SVHD infants differs from healthy controls, how it shifts after stage 2 palliation, or whether differences can predict post-operative outcomes. We present a prospective cohort study of cardiovascular proteomic phenotyping in infants with SVHD undergoing stage 2 palliation. Twenty-nine pre-stage-2 SVHD infants and 25 healthy controls were enrolled. Outcomes included postoperative hypoxemia and endotracheal intubation time. Serum samples were drawn pre-operatively (systemic and pulmonary vein) and at 24 hours postoperation. Targeted cardiovascular proteomic analysis included 184 proteins. Partial least squares discriminant analysis distinguished cases from controls (Accuracy = 0.98, R2 = 0.93, Q2 = 0.81) with decreased inflammatory mediators and increased modulators of vascular tone. Partial least squares discriminant analysis also distinguished cases pre-operation vs. post-operation (Accuracy=0.98, R2=0.99, Q2 = 0.92) with postoperative increase in both inflammatory and vascular tone mediators. Pre-operation pulmonary vein tissue inhibitor of metalloproteinase-1 (1.8x-fold, p=1.6 × 10-4) and nidogen-1 (1.5x-fold, p=1.7 × 10-4) were higher in subjects with longer endotracheal intubation time. Postoperation matrix metalloproteinase 7 levels were higher in subjects with greater postoperative hypoxemia (1.5x-fold, P= 1.97 × 10-5). Proteomic analysis identifies significant changes among SVHD infants pre- and post-stage 2, and healthy controls. Tissue inhibitor of metalloproteinase-1, nidogen-1, and matrix metalloproteinase 7 levels are higher in SVHD cases with greater morbidity suggesting an important role for regulation of extracellular matrix production. Proteomic profiling may identify high-risk SVHD infants.


Assuntos
Proteínas Sanguíneas/análise , Técnica de Fontan/efeitos adversos , Biomarcadores/sangue , Cateterismo Cardíaco , Estudos de Casos e Controles , Feminino , Humanos , Hipóxia/sangue , Hipóxia/etiologia , Lactente , Masculino , Metaloproteinase 7 da Matriz/sangue , Cuidados Paliativos/métodos , Complicações Pós-Operatórias/sangue , Complicações Pós-Operatórias/etiologia , Período Pré-Operatório , Estudos Prospectivos , Proteômica , Veias Pulmonares/metabolismo , Resultado do Tratamento , Coração Univentricular/cirurgia
18.
Metabolomics ; 16(9): 93, 2020 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-32889608

RESUMO

BACKGROUND: Serum kynurenic acid is associated with poor outcomes after infant cardiopulmonary bypass (CPB), but comprehensive mapping of the kynurenine pathway (KP) after CPB has yet to be performed. AIMS: To map changes in the KP induced by infant CPB. METHODS: Compared changes in serum KP metabolites through 48hrs post-op with liquid-chromatography-tandem mass spectrometry. RESULTS: Infant CPB results in marked increase in proximal, but not distal metabolites of the KP. CONCLUSIONS: Infant CPB leads to accumulation of circulating KP metabolites, which have important neurologic and immunologic activities. Thus, further exploration of the KP is warranted in these high-risk infants.


Assuntos
Procedimentos Cirúrgicos Cardíacos/métodos , Ponte Cardiopulmonar/métodos , Cinurenina/metabolismo , Triptofano/metabolismo , Pré-Escolar , Cromatografia Líquida , Humanos , Lactente , Espectrometria de Massas , Metabolômica , Estudos Prospectivos , Serotonina
19.
J Inflamm (Lond) ; 17: 27, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32817746

RESUMO

BACKGROUND: Infant cardiac surgery with cardiopulmonary bypass results in decreased circulating alkaline phosphatase that is associated with poor postoperative outcomes. Bovine intestinal alkaline phosphatase infusion represents a novel therapy for post-cardiac surgery organ injury. However, the effects of cardiopulmonary bypass and bovine-intestinal alkaline phosphatase infusion on tissue-level alkaline phosphatase activity/expression are unknown. METHODS: Infant pigs (n = 20) underwent cardiopulmonary bypass with deep hypothermic circulatory arrest followed by four hours of intensive care. Seven control animals underwent mechanical ventilation only. Cardiopulmonary bypass/deep hypothermic circulatory arrest animals were given escalating doses of bovine intestinal alkaline phosphatase infusion (0-25 U/kg/hr.; n = 5/dose). Kidney, liver, ileum, jejunum, colon, heart and lung were collected for measurement of tissue alkaline phosphatase activity and mRNA. RESULTS: Tissue alkaline phosphatase activity varied significantly across organs with the highest levels found in the kidney and small intestine. Cardiopulmonary bypass with deep hypothermic circulatory arrest resulted in decreased kidney alkaline phosphatase activity and increased lung alkaline phosphatase activity, with no significant changes in the other organs. Alkaline phosphatase mRNA expression was increased in both the lung and the ileum. The highest dose of bovine intestinal alkaline phosphatase resulted in increased kidney and liver tissue alkaline phosphatase activity. CONCLUSIONS: Changes in alkaline phosphatase activity after cardiopulmonary bypass with deep hypothermic circulatory arrest and bovine intestinal alkaline phosphatase delivery are tissue specific. Kidneys, lung, and ileal alkaline phosphatase appear most affected by cardiopulmonary bypass with deep hypothermic circulatory arrest and further research is warranted to determine the mechanism and biologic importance of these changes.

20.
Front Pediatr ; 8: 267, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32537446

RESUMO

Objectives: 1 Measure serial serum intestinal fatty acid binding protein levels in infants undergoing cardiac surgery with cardiopulmonary bypass to evaluate for evidence of early post-operative enterocyte injury. 2 Determine the association between immediate post-operative circulating intestinal fatty acid binding protein levels and subsequent development of necrotizing enterocolitis. Design: Observational cohort study. Intestinal fatty acid binding protein was measured pre-operatively, at rewarming, and at 6 and 24 h post-operatively. Percent of goal enteral kilocalories on post-operative day 5 and episodes of necrotizing enterocolitis were determined. Multivariable analysis assessed for factors independently associated with clinical feeding outcomes and suspected/definite necrotizing enterocolitis. Setting: Quaternary free-standing children's hospital pediatric cardiac intensive care unit. Patients: 103 infants <120 days of age undergoing cardiothoracic surgery with cardiopulmonary bypass. Interventions: None. Results: Median pre-operative intestinal fatty acid binding protein level was 3.93 ng/ml (range 0.24-51.32). Intestinal fatty acid binding protein levels rose significantly at rewarming (6.35 ng/ml; range 0.54-56.97; p = 0.008), continued to rise slightly by 6 h (6.57 ng/ml; range 0.75-112.04; p = 0.016), then decreased by 24 h (2.79 ng/ml; range 0.03-81.74; p < 0.0001). Sixteen subjects (15.7%) developed modified Bell criteria Stage 1 necrotizing enterocolitis and 9 subjects (8.8%) developed Stage 2 necrotizing enterocolitis. Infants who developed necrotizing enterocolitis demonstrated a significantly higher distribution of intestinal fatty acid binding protein levels at both 6 h (p = 0.005) and 24 h (p = 0.005) post-operatively. On multivariable analysis, intestinal fatty acid binding protein was not associated with percentage of goal enteral kilocalories delivered on post-operative day 5. Higher intestinal fatty acid binding protein was independently associated with subsequent development of suspected/definite necrotizing enterocolitis (4% increase in odds of developing necrotizing enterocolitis for each unit increase in intestinal fatty acid binding protein; p = 0.0015). Conclusions: Intestinal fatty acid binding protein levels rise following infant cardiopulmonary bypass, indicating early post-operative enterocyte injury. Intestinal fatty acid binding protein was not associated with percent of goal enteral nutrition achieved on post-operative day 5, likely due to protocolized feeding advancement based on clinically observable factors. Higher intestinal fatty acid binding protein at 6 h post-operatively was independently associated with subsequent development of necrotizing enterocolitis and may help identify patients at risk for this important complication.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA