RESUMO
Pemphigus disease and mucous membrane pemphigoid are autoimmune blistering diseases (AIBDs) which may involve both oral and extra-oral tissues. The Bristol Joint Oral Medicine and Dermatology Combined Clinic was set up in 2014, with the primary aim of improving the standard of care for patients with AIBDs. This interdisciplinary approach aimed to address the medical management challenges due to the multisite nature of these AIBDs.We present a narrative report of the clinical work undertaken within this clinic, focused on the management of this patient cohort within a five-year span (2017-2022). This report outlines the multisite nature of AIBDs and the range of topical and systemic treatments that were employed to achieve adequate disease control and optimise outcomes for patients. We reflect on the experiential benefits of this multidisciplinary clinic extended beyond immediate patient benefits to areas such as specialist training, both from a dermatologist's and oral physician's perspective.
Assuntos
Dermatologia , Medicina Bucal , Penfigoide Mucomembranoso Benigno , Penfigoide Bolhoso , Pênfigo , Humanos , Mucosa , Penfigoide Mucomembranoso Benigno/diagnóstico , Penfigoide Mucomembranoso Benigno/terapia , Penfigoide Bolhoso/tratamento farmacológico , Pênfigo/terapiaRESUMO
Macrophages are present in large numbers in every tissue in the body where they play critical roles in development and homeostasis. They exhibit remarkable phenotypic and functional diversity, underpinning their adaptation to specialized roles in each tissue niche. CSF1, signaling through the CSF1 receptor, which is restricted to monocyte-macrophage lineage cells in adults, is a critical growth factor controlling macrophage proliferation, differentiation, and many aspects of mature macrophage function. We have generated a macrophage reporter rat, utilizing a construct containing elements of the mouse Csf1r promoter and the highly conserved Fms intronic regulatory element to drive mApple fluorescent protein expression. Csf1r-mApple was robustly expressed in monocyte-macrophage lineage cells in rat bone marrow (BM), peripheral blood, and tissues, with detectable expression in granulocytes and B cells and no evidence of expression in hematopoietic precursors or non-hematopoietic cells. Here, we use the Csf1r-mApple transgene to highlight and dissect the abundance and heterogeneity of rat tissue macrophage populations, and to demonstrate parallel increases in blood monocytes and multiple tissue macrophage populations, including BM, liver, spleen, and lung, in response to CSF1 treatment in vivo. The Csf1r-mApple rat is a novel tool enabling analysis of rat macrophages in situ by direct imaging and providing an additional phenotypic marker to facilitate exploration of rat tissue macrophage phenotypic and functional heterogeneity.
Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Fator Estimulador de Colônias de Macrófagos/administração & dosagem , Macrófagos/fisiologia , Monócitos/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Feminino , Macrófagos/citologia , Masculino , Monócitos/citologia , Ratos , Ratos Sprague-Dawley , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Distribuição TecidualRESUMO
The laboratory rat is widely used as a model for human diseases. Many of these diseases involve monocytes and tissue macrophages in different states of activation. Whilst methods for in vitro differentiation of mouse macrophages from embryonic stem cells (ESC) and bone marrow (BM) are well established, these are lacking for the rat. The gene expression profiles of rat macrophages have also not been characterised to the same extent as mouse. We have established the methodology for production of rat ESC-derived macrophages and compared their gene expression profiles to macrophages obtained from the lung and peritoneal cavity and those differentiated from BM and blood monocytes. We determined the gene signature of Kupffer cells in the liver using rats deficient in macrophage colony stimulating factor receptor (CSF1R). We also examined the response of BM-derived macrophages to lipopolysaccharide (LPS). The results indicate that many, but not all, tissue-specific adaptations observed in mice are conserved in the rat. Importantly, we show that unlike mice, rat macrophages express the CSF1R ligand, colony stimulating factor 1 (CSF1).
Assuntos
Células-Tronco Embrionárias/imunologia , Perfilação da Expressão Gênica , Macrófagos Alveolares/imunologia , Macrófagos Peritoneais/imunologia , Transcriptoma/imunologia , Animais , Masculino , Ratos , Ratos MutantesRESUMO
One of the most significant physiological challenges to neonatal and juvenile ruminants is the development and establishment of the rumen. Using a subset of RNA-Seq data from our high-resolution atlas of gene expression in sheep (Ovis aries) we have provided the first comprehensive characterization of transcription of the entire gastrointestinal (GI) tract during the transition from pre-ruminant to ruminant. The dataset comprises 164 tissue samples from sheep at four different time points (birth, one week, 8 weeks and adult). Using network cluster analysis we illustrate how the complexity of the GI tract is reflected in tissue- and developmental stage-specific differences in gene expression. The most significant transcriptional differences between neonatal and adult sheep were observed in the rumen complex. Comparative analysis of gene expression in three GI tract tissues from age-matched sheep and goats revealed species-specific differences in genes involved in immunity and metabolism. This study improves our understanding of the transcriptomic mechanisms involved in the transition from pre-ruminant to ruminant by identifying key genes involved in immunity, microbe recognition and metabolism. The results form a basis for future studies linking gene expression with microbial colonization of the developing GI tract and provide a foundation to improve ruminant efficiency and productivity through identifying potential targets for novel therapeutics and gene editing.
Assuntos
Trato Gastrointestinal/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Cabras/genética , Ovinos/genética , Transcriptoma , Animais , Trato Gastrointestinal/crescimento & desenvolvimento , Cabras/crescimento & desenvolvimento , Ovinos/crescimento & desenvolvimentoRESUMO
We have produced Csf1r-deficient rats by homologous recombination in embryonic stem cells. Consistent with the role of Csf1r in macrophage differentiation, there was a loss of peripheral blood monocytes, microglia in the brain, epidermal Langerhans cells, splenic marginal zone macrophages, bone-associated macrophages and osteoclasts, and peritoneal macrophages. Macrophages of splenic red pulp, liver, lung, and gut were less affected. The pleiotropic impacts of the loss of macrophages on development of multiple organ systems in rats were distinct from those reported in mice. Csf1r-/- rats survived well into adulthood with postnatal growth retardation, distinct skeletal and bone marrow abnormalities, infertility, and loss of visceral adipose tissue. Gene expression analysis in spleen revealed selective loss of transcripts associated with the marginal zone and, in brain regions, the loss of known and candidate novel microglia-associated transcripts. Despite the complete absence of microglia, there was little overt phenotype in brain, aside from reduced myelination and increased expression of dopamine receptor-associated transcripts in striatum. The results highlight the redundant and nonredundant functions of CSF1R signaling and of macrophages in development, organogenesis, and homeostasis.
Assuntos
Macrófagos , Microglia , Organogênese/genética , Ratos/crescimento & desenvolvimento , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/deficiência , Animais , Modelos Animais , Mutação , Ratos/genéticaRESUMO
CSF1 is the primary growth factor controlling macrophage numbers, but whether expression of the CSF1 receptor differs between discrete populations of mononuclear phagocytes remains unclear. We have generated a Csf1r-mApple transgenic fluorescent reporter mouse that, in combination with lineage tracing, Alexa Fluor 647-labeled CSF1-Fc and CSF1, and a modified ΔCsf1-enhanced cyan fluorescent protein (ECFP) transgene that lacks a 150 bp segment of the distal promoter, we have used to dissect the differentiation and CSF1 responsiveness of mononuclear phagocyte populations in situ. Consistent with previous Csf1r-driven reporter lines, Csf1r-mApple was expressed in blood monocytes and at higher levels in tissue macrophages, and was readily detectable in whole mounts or with multiphoton microscopy. In the liver and peritoneal cavity, uptake of labeled CSF1 largely reflected transgene expression, with greater receptor activity in mature macrophages than monocytes and tissue-specific expression in conventional dendritic cells. However, CSF1 uptake also differed between subsets of monocytes and discrete populations of tissue macrophages, which in macrophages correlated with their level of dependence on CSF1 receptor signaling for survival rather than degree of transgene expression. A double ΔCsf1r-ECFP-Csf1r-mApple transgenic mouse distinguished subpopulations of microglia in the brain, and permitted imaging of interstitial macrophages distinct from alveolar macrophages, and pulmonary monocytes and conventional dendritic cells. The Csf1r-mApple mice and fluorescently labeled CSF1 will be valuable resources for the study of macrophage and CSF1 biology, which are compatible with existing EGFP-based reporter lines.
Assuntos
Sistema Fagocitário Mononuclear/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Transgenes/genética , Animais , Diferenciação Celular/genética , Células Dendríticas/metabolismo , Proteínas de Fluorescência Verde/genética , Fator Estimulador de Colônias de Macrófagos/genética , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Monócitos/metabolismo , Transdução de Sinais/genéticaRESUMO
Signaling via the colony-stimulating factor 1 receptor (CSF1R) controls the survival, differentiation, and proliferation of macrophages. Mutations in CSF1 or CSF1R in mice and rats have pleiotropic effects on postnatal somatic growth. We tested the possible application of pig CSF1-Fc fusion protein as a therapy for low birth weight (LBW) at term, using a model based on maternal dexamethasone treatment in rats. Neonatal CSF1-Fc treatment did not alter somatic growth and did not increase the blood monocyte count. Instead, there was a substantial increase in the size of liver in both control and LBW rats, and the treatment greatly exacerbated lipid droplet accumulation seen in the dexamethasone LBW model. These effects were reversed upon cessation of treatment. Transcriptional profiling of the livers supported histochemical evidence of a large increase in macrophages with a resident Kupffer cell phenotype and revealed increased expression of many genes implicated in lipid droplet formation. There was no further increase in hepatocyte proliferation over the already high rates in neonatal liver. In conclusion, treatment of neonatal rats with CSF1-Fc caused an increase in liver size and hepatic lipid accumulation, due to Kupffer cell expansion and/or activation rather than hepatocyte proliferation. Increased liver macrophage numbers and expression of endocytic receptors could mitigate defective clearance functions in neonates. NEW & NOTEWORTHY This study is based on extensive studies in mice and pigs of the role of CSF1/CSF1R in macrophage development and postnatal growth. We extended the study to neonatal rats as a possible therapy for low birth weight. Unlike our previous studies in mice and pigs, there was no increase in hepatocyte proliferation and no increase in monocyte numbers. Instead, neonatal rats treated with CSF1 displayed reversible hepatic steatosis and Kupffer cell expansion.
Assuntos
Adiposidade/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fígado Gorduroso/induzido quimicamente , Retardo do Crescimento Fetal/tratamento farmacológico , Células de Kupffer/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fator Estimulador de Colônias de Macrófagos/farmacologia , Animais , Animais Recém-Nascidos , Peso ao Nascer , Células Cultivadas , Dexametasona , Modelos Animais de Doenças , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Feminino , Retardo do Crescimento Fetal/induzido quimicamente , Retardo do Crescimento Fetal/metabolismo , Retardo do Crescimento Fetal/patologia , Células de Kupffer/metabolismo , Células de Kupffer/patologia , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Fígado/patologia , Fator Estimulador de Colônias de Macrófagos/toxicidade , Masculino , Gravidez , Ratos Sprague-Dawley , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/agonistas , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Baço/efeitos dos fármacos , Baço/metabolismo , Baço/patologia , Sus scrofaRESUMO
Oral hairy leukoplakia (OHL) is an oral mucosal lesion that is associated with Epstein-Barr virus infection. It commonly presents as an asymptomatic, non-removable white patch on the lateral borders of the tongue in individuals who are immunocompromised. Historically, OHL was thought to be pathognomonic of HIV infection; however, it is now an established phenomenon in a range of conditions affecting immune competence. Hairy cell leukaemia (HCL) is a rare chronic B cell lymphoproliferative disease named after the distinctive cytology of the atypical cells. We report the first case of OHL arising in an individual with HCL that resolved following remission of the haematological malignancy.
Assuntos
Infecções por Vírus Epstein-Barr/complicações , Leucemia de Células Pilosas/tratamento farmacológico , Leucoplasia Pilosa/diagnóstico , Líquen Plano Bucal/diagnóstico , Humanos , Leucoplasia Pilosa/virologia , Líquen Plano Bucal/virologia , Masculino , Pessoa de Meia-Idade , PurinasRESUMO
Expression of Csf1r in adults is restricted to cells of the macrophage lineage. Transgenic reporters based upon the Csf1r locus require inclusion of the highly conserved Fms-intronic regulatory element for expression. We have created Csf1r-EGFP transgenic sheep via lentiviral transgenesis of a construct containing elements of the mouse Fms-intronic regulatory element and Csf1r promoter. Committed bone marrow macrophage precursors and blood monocytes express EGFP in these animals. Sheep monocytes were divided into three populations, similar to classical, intermediate, and nonclassical monocytes in humans, based upon CD14 and CD16 expression. All expressed EGFP, with increased levels in the nonclassical subset. Because Csf1r expression coincides with the earliest commitment to the macrophage lineage, Csf1r-EGFP bone marrow provides a tool for studying the earliest events in myelopoiesis using the sheep as a model.
Assuntos
Animais Geneticamente Modificados/imunologia , Biomarcadores/sangue , Proteínas de Fluorescência Verde/genética , Macrófagos/fisiologia , Monócitos/fisiologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Animais , Diferenciação Celular , Humanos , Receptores de Lipopolissacarídeos/genética , Receptores de Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Camundongos , Mielopoese , Regiões Promotoras Genéticas , Receptores de IgG/genética , Receptores de IgG/imunologia , Ovinos/genética , TransgenesRESUMO
Macrophage colony-stimulating factor (CSF1) is an essential growth and differentiation factor for cells of the macrophage lineage. To explore the role of CSF1 in steady-state control of monocyte production and differentiation and tissue repair, we previously developed a bioactive protein with a longer half-life in circulation by fusing pig CSF1 with the Fc region of pig IgG1a. CSF1-Fc administration to pigs expanded progenitor pools in the marrow and selectively increased monocyte numbers and their expression of the maturation marker CD163. There was a rapid increase in the size of the liver, and extensive proliferation of hepatocytes associated with increased macrophage infiltration. Despite the large influx of macrophages, there was no evidence of liver injury and no increase in circulating liver enzymes. Microarray expression profiling of livers identified increased expression of macrophage markers, i.e., cytokines such as TNF, IL1, and IL6 known to influence hepatocyte proliferation, alongside cell cycle genes. The analysis also revealed selective enrichment of genes associated with portal, as opposed to centrilobular regions, as seen in hepatic regeneration. Combined with earlier data from the mouse, this study supports the existence of a CSF1-dependent feedback loop, linking macrophages of the liver with bone marrow and blood monocytes, to mediate homeostatic control of the size of the liver. The results also provide evidence of safety and efficacy for possible clinical applications of CSF1-Fc.
Assuntos
Fígado/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Fator Estimulador de Colônias de Macrófagos/farmacologia , Monócitos/fisiologia , Suínos , Animais , Anticorpos , Antígenos CD , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Feminino , Regulação Enzimológica da Expressão Gênica , Leucócitos Mononucleares/fisiologia , MasculinoRESUMO
Joubert syndrome (JBTS) is a severe recessive neurodevelopmental ciliopathy which can affect several organ systems. Mutations in known JBTS genes account for approximately half of the cases. By homozygosity mapping and whole-exome sequencing, we identified a novel locus, JBTS23, with a homozygous splice site mutation in KIAA0586 (alias TALPID3), a known lethal ciliopathy locus in model organisms. Truncating KIAA0586 mutations were identified in two additional patients with JBTS. One mutation, c.428delG (p.Arg143Lysfs*4), is unexpectedly common in the general population and may be a major contributor to JBTS. We demonstrate KIAA0586 protein localization at the basal body in human and mouse photoreceptors, as is common for JBTS proteins, and also in pericentriolar locations. We show that loss of TALPID3 (KIAA0586) function in animal models causes abnormal tissue polarity, centrosome length and orientation, and centriolar satellites. We propose that JBTS and other ciliopathies may in part result from cell polarity defects.
Assuntos
Proteínas de Ciclo Celular/genética , Polaridade Celular , Centrossomo/metabolismo , Cerebelo/anormalidades , Mutação , Retina/anormalidades , Anormalidades Múltiplas/genética , Animais , Modelos Animais de Doenças , Anormalidades do Olho/genética , Humanos , Doenças Renais Císticas/genética , CamundongosRESUMO
Motile cilia are an essential component of the mouse, zebrafish, and Xenopus laevis Left Right Organizers, generating nodal flow and allowing the reception and transduction of mechanosensory signals. Nonmotile primary cilia are also an important component of the Left Right Organizer's chemosensory mechanism. It has been proposed in the chicken that signaling in Hensen's node, the Left Right Organizer of the chicken, is independent of cilia, based on a lack of evidence of motile cilia or nodal flow. It is speculated that the talpid(3) chicken mutant, which has normal left-right patterning despite lacking cilia at many stages of development, is proof of this hypothesis. Here, we examine the evidence for cilia in Hensen's node and find that although cilia are present; they are likely to be immotile and incapable of generating nodal flow. Furthermore, we find that early planar cell polarity patterning and ciliogenesis is normal in early talpid(3) chicken embryos. We conclude that patterning and development of the early talpid(3) chicken is normal, but not necessarily independent of cilia. Although it appears that Hensen's node does not require motile cilia or the generation of motile flow, there may remain a requirement for cilia in the transduction of SHH signaling.
Assuntos
Padronização Corporal/fisiologia , Proteínas de Ciclo Celular/genética , Cílios/metabolismo , Desenvolvimento Embrionário/fisiologia , Organogênese/fisiologia , Animais , Proteínas de Ciclo Celular/metabolismo , Embrião de Galinha , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismoRESUMO
BACKGROUND: Loss of function mutations in the centrosomal protein TALPID3 (KIAA0586) cause a failure of primary cilia formation in animal models and are associated with defective Hedgehog signalling. It is unclear, however, if TALPID3 is required only for primary cilia formation or if it is essential for all ciliogenesis, including that of motile cilia in multiciliate cells. RESULTS: FOXJ1, a key regulator of multiciliate cell fate, is expressed in the dorsal neuroectoderm of the chicken forebrain and hindbrain at stage 20HH, in areas that will give rise to choroid plexuses in both wt and talpid(3) embryos. Wt ependymal cells of the prosencephalic choroid plexuses subsequently transition from exhibiting single short cilia to multiple long motile cilia at 29HH (E8). Primary cilia and long motile cilia were only rarely observed on talpid(3) ependymal cells. Electron microscopy determined that talpid(3) ependymal cells do develop multiple centrosomes in accordance with FOXJ1 expression, but these fail to migrate to the apical surface of ependymal cells although axoneme formation was sometimes observed. CONCLUSIONS: TALPID3, which normally localises to the proximal centrosome, is essential for centrosomal migration prior to ciliogenesis but is not directly required for de novo centriologenesis, multiciliated fate, or axoneme formation.