Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
iScience ; 19: 737-748, 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31491720

RESUMO

Prolonged heat and sea salt aerosols pose a challenge for the mammalian airway, placing the protective airway surface liquid (ASL) at risk for desiccation. Thus, mammals inhabiting salt marshes might have acquired adaptations for ASL regulation. We studied the airways of the rice rat, a rodent that inhabits salt marshes. We discovered negligible Na+ transport through the epithelial sodium channel (ENaC). In contrast, carbachol induced a large Cl- secretory current that was blocked by the calcium-activated chloride channel (CaCC) inhibitor CaCCinhi-A01. Decreased mRNA expression of α, ß, and γ ENaC, and increased mRNA expression of the CaCC transmembrane member 16A, distinguished the rice rat airway. Rice rat airway cultures also secreted fluid in response to carbachol and displayed an exaggerated expansion of the ASL volume when challenged with 3.5% NaCl. These data suggest that the rice rat airway might possess unique ion transport adaptations to facilitate survival in the salt marsh environment.

2.
Am J Physiol Lung Cell Mol Physiol ; 316(1): L131-L143, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30407862

RESUMO

Acute airway acidification is a potent stimulus of sensory nerves and occurs commonly with gastroesophageal reflux disease, cystic fibrosis, and asthma. In infants and adults, airway acidification can acutely precipitate asthma-like symptoms, and treatment-resistant asthma can be associated with gastroesophageal reflux disease. Airway protective behaviors, such as mucus secretion and airway smooth muscle contraction, are often exaggerated in asthma. These behaviors are manifested through activation of neural circuits. In some populations, the neural response to acid might be particularly important. For example, the immune response in infants is relatively immature compared with adults. Infants also have a high frequency of gastroesophageal reflux. Thus, in the current study, we compared the transcriptomes of an airway-nervous system circuit (e.g., tracheal epithelia, nodose ganglia, and brain stem) in neonatal piglets challenged with intra-airway acid. We hypothesized that the identification of parallel changes in the transcriptomes of two neutrally connected tissues might reveal the circuit response, and, hence, molecules important for the manifestation of asthma-like features. Intra-airway acid induced airway hyperreactivity and airway obstruction in male piglets. In contrast, female piglets displayed airway obstruction without airway hyperreactivity. Pairwise comparisons revealed parallel changes in genes directly implicated in airway hyperreactivity ( scn10a) in male acid-challenged piglets, whereas acid-challenged females exhibited parallel changes in genes associated with mild asthma ( stat 1 and isg15). These findings reveal sex-specific responses to acute airway acidification and highlight distinct molecules within a neural circuit that might be critical for the manifestation of asthma-like symptoms in pediatric populations.


Assuntos
Ácido Acético/toxicidade , Remodelação das Vias Aéreas/efeitos dos fármacos , Asma/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Caracteres Sexuais , Transcriptoma/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Asma/induzido quimicamente , Asma/patologia , Feminino , Refluxo Gastroesofágico/metabolismo , Refluxo Gastroesofágico/patologia , Masculino , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA