Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Opt Express ; 32(4): 6241-6257, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439332

RESUMO

Imaging through scattering is a pervasive and difficult problem in many biological applications. The high background and the exponentially attenuated target signals due to scattering fundamentally limits the imaging depth of fluorescence microscopy. Light-field systems are favorable for high-speed volumetric imaging, but the 2D-to-3D reconstruction is fundamentally ill-posed, and scattering exacerbates the condition of the inverse problem. Here, we develop a scattering simulator that models low-contrast target signals buried in heterogeneous strong background. We then train a deep neural network solely on synthetic data to descatter and reconstruct a 3D volume from a single-shot light-field measurement with low signal-to-background ratio (SBR). We apply this network to our previously developed computational miniature mesoscope and demonstrate the robustness of our deep learning algorithm on scattering phantoms with different scattering conditions. The network can robustly reconstruct emitters in 3D with a 2D measurement of SBR as low as 1.05 and as deep as a scattering length. We analyze fundamental tradeoffs based on network design factors and out-of-distribution data that affect the deep learning model's generalizability to real experimental data. Broadly, we believe that our simulator-based deep learning approach can be applied to a wide range of imaging through scattering techniques where experimental paired training data is lacking.

2.
Neuron ; 112(6): 909-923.e9, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38242115

RESUMO

Neural population dynamics relevant to behavior vary over multiple spatial and temporal scales across three-dimensional volumes. Current optical approaches lack the spatial coverage and resolution necessary to measure and manipulate naturally occurring patterns of large-scale, distributed dynamics within and across deep brain regions such as the striatum. We designed a new micro-fiber array approach capable of chronically measuring and optogenetically manipulating local dynamics across over 100 targeted locations simultaneously in head-fixed and freely moving mice, enabling the investigation of cell-type- and neurotransmitter-specific signals over arbitrary 3D volumes at a spatial resolution and coverage previously inaccessible. We applied this method to resolve rapid dopamine release dynamics across the striatum, revealing distinct, modality-specific spatiotemporal patterns in response to salient sensory stimuli extending over millimeters of tissue. Targeted optogenetics enabled flexible control of neural signaling on multiple spatial scales, better matching endogenous signaling patterns, and the spatial localization of behavioral function across large circuits.


Assuntos
Encéfalo , Dopamina , Camundongos , Animais , Encéfalo/fisiologia , Corpo Estriado , Neostriado , Optogenética/métodos
3.
bioRxiv ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38014018

RESUMO

Neural population dynamics relevant for behavior vary over multiple spatial and temporal scales across 3-dimensional volumes. Current optical approaches lack the spatial coverage and resolution necessary to measure and manipulate naturally occurring patterns of large-scale, distributed dynamics within and across deep brain regions such as the striatum. We designed a new micro-fiber array and imaging approach capable of chronically measuring and optogenetically manipulating local dynamics across over 100 targeted locations simultaneously in head-fixed and freely moving mice. We developed a semi-automated micro-CT based strategy to precisely localize positions of each optical fiber. This highly-customizable approach enables investigation of multi-scale spatial and temporal patterns of cell-type and neurotransmitter specific signals over arbitrary 3-D volumes at a spatial resolution and coverage previously inaccessible. We applied this method to resolve rapid dopamine release dynamics across the striatum volume which revealed distinct, modality specific spatiotemporal patterns in response to salient sensory stimuli extending over millimeters of tissue. Targeted optogenetics through our fiber arrays enabled flexible control of neural signaling on multiple spatial scales, better matching endogenous signaling patterns, and spatial localization of behavioral function across large circuits.

4.
ArXiv ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36994164

RESUMO

Imaging through scattering is a pervasive and difficult problem in many biological applications. The high background and the exponentially attenuated target signals due to scattering fundamentally limits the imaging depth of fluorescence microscopy. Light-field systems are favorable for high-speed volumetric imaging, but the 2D-to-3D reconstruction is fundamentally ill-posed, and scattering exacerbates the condition of the inverse problem. Here, we develop a scattering simulator that models low-contrast target signals buried in heterogeneous strong background. We then train a deep neural network solely on synthetic data to descatter and reconstruct a 3D volume from a single-shot light-field measurement with low signal-to-background ratio (SBR). We apply this network to our previously developed Computational Miniature Mesoscope and demonstrate the robustness of our deep learning algorithm on scattering phantoms with different scattering conditions. The network can robustly reconstruct emitters in 3D with a 2D measurement of SBR as low as 1.05 and as deep as a scattering length. We analyze fundamental tradeoffs based on network design factors and out-of-distribution data that affect the deep learning model's generalizability to real experimental data. Broadly, we believe that our simulator-based deep learning approach can be applied to a wide range of imaging through scattering techniques where experimental paired training data is lacking.

5.
Nat Methods ; 20(7): 1095-1103, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36973547

RESUMO

Monitoring spiking activity across large neuronal populations at behaviorally relevant timescales is critical for understanding neural circuit function. Unlike calcium imaging, voltage imaging requires kilohertz sampling rates that reduce fluorescence detection to near shot-noise levels. High-photon flux excitation can overcome photon-limited shot noise, but photobleaching and photodamage restrict the number and duration of simultaneously imaged neurons. We investigated an alternative approach aimed at low two-photon flux, which is voltage imaging below the shot-noise limit. This framework involved developing positive-going voltage indicators with improved spike detection (SpikeyGi and SpikeyGi2); a two-photon microscope ('SMURF') for kilohertz frame rate imaging across a 0.4 mm × 0.4 mm field of view; and a self-supervised denoising algorithm (DeepVID) for inferring fluorescence from shot-noise-limited signals. Through these combined advances, we achieved simultaneous high-speed deep-tissue imaging of more than 100 densely labeled neurons over 1 hour in awake behaving mice. This demonstrates a scalable approach for voltage imaging across increasing neuronal populations.


Assuntos
Microscopia , Neurônios , Camundongos , Animais , Neurônios/fisiologia , Algoritmos , Cálcio
6.
Cell Rep ; 40(8): 111262, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-36001975

RESUMO

In the Bruce effect, a mated female mouse becomes resistant to the pregnancy-blocking effect of the stud. Various lines of evidence suggest that this form of behavioral imprinting results from reduced sensitivity of the female's accessory olfactory bulb (AOB) to the stud's chemosignals. However, the AOB's combinatorial code implies that diminishing responses to one individual will distort representations of other stimuli. Here, we record extracellular responses of AOB neurons in mated and unmated female mice while presenting urine stimuli from the stud and from other sources. We find that, while initial sensory responses in the AOB (within a timescale required to guide social interactions) remain stable, responses to extended stimulation (as required for eliciting the pregnancy block) display selective attenuation of stud-responsive neurons. Such temporal disassociation could allow attenuation of slow-acting endocrine processes in a stimulus-specific manner without compromising ongoing representations that guide behavior.


Assuntos
Neurônios , Bulbo Olfatório , Animais , Feminino , Camundongos , Neurônios/fisiologia , Bulbo Olfatório/fisiologia , Gravidez
7.
Sci Adv ; 6(43)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33087364

RESUMO

Fluorescence microscopes are indispensable to biology and neuroscience. The need for recording in freely behaving animals has further driven the development in miniaturized microscopes (miniscopes). However, conventional microscopes/miniscopes are inherently constrained by their limited space-bandwidth product, shallow depth of field (DOF), and inability to resolve three-dimensional (3D) distributed emitters. Here, we present a Computational Miniature Mesoscope (CM2) that overcomes these bottlenecks and enables single-shot 3D imaging across an 8 mm by 7 mm field of view and 2.5-mm DOF, achieving 7-µm lateral resolution and better than 200-µm axial resolution. The CM2 features a compact lightweight design that integrates a microlens array for imaging and a light-emitting diode array for excitation. Its expanded imaging capability is enabled by computational imaging that augments the optics by algorithms. We experimentally validate the mesoscopic imaging capability on 3D fluorescent samples. We further quantify the effects of scattering and background fluorescence on phantom experiments.

8.
J Neurosci ; 40(21): 4203-4218, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32312886

RESUMO

The accessory olfactory system controls social and sexual behavior. In the mouse accessory olfactory bulb, the first central stage of information processing along the accessory olfactory pathway, projection neurons (mitral cells) display infra-slow oscillatory discharge with remarkable periodicity. The physiological mechanisms that underlie this default output state, however, remain controversial. Moreover, whether such rhythmic infra-slow activity patterns exist in awake behaving mice and whether such activity reflects the functional organization of the accessory olfactory bulb circuitry remain unclear. Here, we hypothesize that mitral cell ensembles form synchronized microcircuits that subdivide the accessory olfactory bulb into segregated functional clusters. We use a miniature microscope to image the Ca2+ dynamics within the apical dendritic compartments of large mitral cell ensembles in vivo We show that infra-slow periodic patterns of concerted neural activity, indeed, reflect the idle state of accessory olfactory bulb output in awake male and female mice. Ca2+ activity profiles are distinct and glomerulus-specific. Confocal time-lapse imaging in acute slices reveals that groups of mitral cells assemble into microcircuits that exhibit correlated Ca2+ signals. Moreover, electrophysiological profiling of synaptic connectivity indicates functional coupling between mitral cells. Our results suggest that both intrinsically rhythmogenic neurons and neurons entrained by fast synaptic drive are key elements in organizing the accessory olfactory bulb into functional microcircuits, each characterized by a distinct default pattern of infra-slow rhythmicity.SIGNIFICANCE STATEMENT Information processing in the accessory olfactory bulb (AOB) plays a central role in conspecific chemosensory communication. Surprisingly, many basic physiological principles that underlie neuronal signaling in the AOB remain elusive. Here, we show that AOB projection neurons (mitral cells) form parallel synchronized ensembles both in vitro and in vivo Infra-slow synchronous oscillatory activity within AOB microcircuits thus adds a new dimension to chemosensory coding along the accessory olfactory pathway.


Assuntos
Rede Nervosa/fisiologia , Neurônios/fisiologia , Bulbo Olfatório/fisiologia , Condutos Olfatórios/fisiologia , Potenciais de Ação/fisiologia , Animais , Camundongos
9.
Nat Methods ; 17(3): 283-286, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32042186

RESUMO

Multiphoton microscopy has gained enormous popularity because of its unique capacity to provide high-resolution images from deep within scattering tissue. Here, we demonstrate video-rate multiplane imaging with two-photon microscopy by performing near-instantaneous axial scanning while maintaining three-dimensional micrometer-scale resolution. Our technique, termed reverberation microscopy, enables the monitoring of neuronal populations over large depth ranges and can be implemented as a simple add-on to a conventional design.


Assuntos
Encéfalo/diagnóstico por imagem , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Córtex Motor/diagnóstico por imagem , Neurônios/fisiologia , Bulbo Olfatório/diagnóstico por imagem , Acústica , Animais , Feminino , Imageamento Tridimensional , Camundongos , Camundongos Endogâmicos C57BL , Óptica e Fotônica , Imagens de Fantasmas , Fótons , Espalhamento de Radiação , Razão Sinal-Ruído
10.
Front Cell Neurosci ; 13: 166, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31105533

RESUMO

Traumatic brain injury (TBI) affects millions of Americans annually, but effective treatments remain inadequate due to our poor understanding of how injury impacts neural function. Data are particularly limited for mild, closed-skull TBI, which forms the majority of human cases, and for acute injury phases, when trauma effects and compensatory responses appear highly dynamic. Here we use a mouse model of mild TBI to characterize injury-induced synaptic dysfunction, and examine its progression over the hours to days after trauma. Mild injury consistently caused both locomotor deficits and localized neuroinflammation in piriform and entorhinal cortices, along with reduced olfactory discrimination ability. Using whole-cell recordings to characterize synaptic input onto piriform pyramidal neurons, we found moderate effects on excitatory or inhibitory synaptic function at 48 h after TBI and robust increase in excitatory inputs in slices prepared 1 h after injury. Excitatory increases predominated over inhibitory effects, suggesting that loss of excitatory-inhibitory balance is a common feature of both mild and severe TBI. Our data indicate that mild injury drives rapidly evolving alterations in neural function in the hours following injury, highlighting the need to better characterize the interplay between the primary trauma responses and compensatory effects during this early time period.

11.
Sci Rep ; 7(1): 5817, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28725020

RESUMO

Multiphoton microscopes are hampered by limited dynamic range, preventing weak sample features from being detected in the presence of strong features, or preventing the capture of unpredictable bursts in sample strength. We present a digital electronic add-on technique that vastly improves the dynamic range of a multiphoton microscope while limiting potential photodamage. The add-on provides real-time negative feedback to regulate the laser power delivered to the sample, and a log representation of the sample strength to accommodate ultrahigh dynamic range without loss of information. No microscope hardware modifications are required, making the technique readily compatible with commercial instruments. Benefits are shown in both structural and in-vivo functional mouse brain imaging applications.


Assuntos
Imageamento Tridimensional , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Neurônios/citologia , Animais , Encéfalo/anatomia & histologia , Camundongos , Razão Sinal-Ruído
12.
Elife ; 62017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28621665

RESUMO

Social interactions are often powerful drivers of learning. In female mice, mating creates a long-lasting sensory memory for the pheromones of the stud male that alters neuroendocrine responses to his chemosignals for many weeks. The cellular and synaptic correlates of pheromonal learning, however, remain unclear. We examined local circuit changes in the accessory olfactory bulb (AOB) using targeted ex vivo recordings of mating-activated neurons tagged with a fluorescent reporter. Imprinting led to striking plasticity in the intrinsic membrane excitability of projection neurons (mitral cells, MCs) that dramatically curtailed their responsiveness, suggesting a novel cellular substrate for pheromonal learning. Plasticity was selectively expressed in the MC ensembles activated by the stud male, consistent with formation of memories for specific individuals. Finally, MC excitability gained atypical activity-dependence whose slow dynamics strongly attenuated firing on timescales of several minutes. This unusual form of AOB plasticity may act to filter sustained or repetitive sensory signals.


Assuntos
Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/fisiologia , Feromônios/metabolismo , Olfato , Animais , Feminino , Camundongos , Percepção Olfatória , Aprendizado Social
13.
Neuron ; 70(1): 82-94, 2011 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-21482358

RESUMO

Odors are initially encoded in the brain as a set of distinct physicochemical characteristics but are ultimately perceived as a unified sensory object--a "smell." It remains unclear how chemical features encoded by diverse odorant receptors and segregated glomeruli in the main olfactory bulb (MOB) are assembled into integrated cortical representations. Combining patterned optical microstimulation of MOB with in vivo electrophysiological recordings in anterior piriform cortex (PCx), we assessed how cortical neurons decode complex activity patterns distributed across MOB glomeruli. PCx firing was insensitive to single-glomerulus photostimulation. Instead, individual cells reported higher-order combinations of coactive glomeruli resembling odor-evoked sensory maps. Intracellular recordings revealed a corresponding circuit architecture providing each cortical neuron with weak synaptic input from a distinct subpopulation of MOB glomeruli. PCx neurons thus detect specific glomerular ensembles, providing an explicit neural representation of chemical feature combinations that are the hallmark of complex odor stimuli.


Assuntos
Rede Nervosa/fisiologia , Odorantes , Bulbo Olfatório/fisiologia , Condutos Olfatórios/fisiologia , Potenciais de Ação/fisiologia , Animais , Camundongos
14.
Cell ; 141(3): 524-35, 2010 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-20434989

RESUMO

Changes in postsynaptic membrane composition underlie many forms of learning-related synaptic plasticity in the brain. At excitatory glutamatergic synapses, fusion of intracellular vesicles at or near the postsynaptic plasma membrane is critical for dendritic spine morphology, retrograde synaptic signaling, and long-term synaptic plasticity. Whereas the molecular machinery for exocytosis in presynaptic terminals has been defined in detail, little is known about the location, kinetics, regulation, or molecules involved in postsynaptic exocytosis. Here, we show that an exocytic domain adjacent to the postsynaptic density (PSD) enables fusion of large, AMPA receptor-containing recycling compartments during elevated synaptic activity. Exocytosis occurs at microdomains enriched in the plasma membrane t-SNARE syntaxin 4 (Stx4), and disruption of Stx4 impairs both spine exocytosis and long-term potentiation (LTP) at hippocampal synapses. Thus, Stx4 defines an exocytic zone that directs membrane fusion for postsynaptic plasticity, revealing a novel specialization for local membrane traffic in dendritic spines.


Assuntos
Membrana Celular/metabolismo , Espinhas Dendríticas/metabolismo , Proteínas Qa-SNARE/metabolismo , Animais , Células Cultivadas , Endossomos/metabolismo , Exocitose , Técnicas de Silenciamento de Genes , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Qa-SNARE/genética , Ratos , Proteínas SNARE/metabolismo
15.
Cell ; 135(3): 535-48, 2008 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-18984164

RESUMO

Learning-related plasticity at excitatory synapses in the mammalian brain requires the trafficking of AMPA receptors and the growth of dendritic spines. However, the mechanisms that couple plasticity stimuli to the trafficking of postsynaptic cargo are poorly understood. Here we demonstrate that myosin Vb (MyoVb), a Ca2+-sensitive motor, conducts spine trafficking during long-term potentiation (LTP) of synaptic strength. Upon activation of NMDA receptors and corresponding Ca2+ influx, MyoVb associates with recycling endosomes (REs), triggering rapid spine recruitment of endosomes and local exocytosis in spines. Disruption of MyoVb or its interaction with the RE adaptor Rab11-FIP2 abolishes LTP-induced exocytosis from REs and prevents both AMPA receptor insertion and spine growth. Furthermore, induction of tight binding of MyoVb to actin using an acute chemical genetic strategy eradicates LTP in hippocampal slices. Thus, Ca2+-activated MyoVb captures and mobilizes REs for AMPA receptor insertion and spine growth, providing a mechanistic link between the induction and expression of postsynaptic plasticity.


Assuntos
Endossomos/metabolismo , Potenciação de Longa Duração , Miosina Tipo V/metabolismo , Plasticidade Neuronal , Receptores de AMPA/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , Dendritos/metabolismo , Espinhas Dendríticas/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos , Miosina Tipo V/química , Neurônios/metabolismo , Ratos , Sinapses/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
16.
Nat Methods ; 5(4): 299-302, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18327266

RESUMO

Here we describe a knock-in mouse model for Cre-loxP-based conditional expression of TRPV1 in central nervous system neurons. Expression of Cre recombinase using biolistics, lentivirus or genetic intercrosses triggered heterologous expression of TRPV1 in a cell-specific manner. Application of the TRPV1 ligand capsaicin induced strong inward currents, triggered action potentials and activated stereotyped behaviors, allowing cell type-specific chemical genetic control of neuronal activity in vitro and in vivo.


Assuntos
Comportamento Animal , Integrases , Neurônios , Recombinação Genética , Canais de Cátion TRPV/genética , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Capsaicina/farmacologia , Marcação de Genes , Genes Reporter , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Imuno-Histoquímica , Integrases/biossíntese , Lentivirus/genética , Camundongos , Camundongos Knockout , Neurônios/enzimologia , Neurônios/metabolismo , Neurônios/fisiologia , Técnicas de Patch-Clamp , Ratos , Transfecção
17.
Neuron ; 54(2): 205-18, 2007 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-17442243

RESUMO

Channelrhodopsin-2 (ChR2) is a light-gated, cation-selective ion channel isolated from the green algae Chlamydomonas reinhardtii. Here, we report the generation of transgenic mice that express a ChR2-YFP fusion protein in the CNS for in vivo activation and mapping of neural circuits. Using focal illumination of the cerebral cortex and olfactory bulb, we demonstrate a highly reproducible, light-dependent activation of neurons and precise control of firing frequency in vivo. To test the feasibility of mapping neural circuits, we exploited the circuitry formed between the olfactory bulb and the piriform cortex in anesthetized mice. In the olfactory bulb, individual mitral cells fired action potentials in response to light, and their firing rate was not influenced by costimulated glomeruli. However, in piriform cortex, the activity of target neurons increased as larger areas of the bulb were illuminated to recruit additional glomeruli. These results support a model of olfactory processing that is dependent upon mitral cell convergence and integration onto cortical cells. More broadly, these findings demonstrate a system for precise manipulation of neural activity in the intact mammalian brain with light and illustrate the use of ChR2 mice in exploring functional connectivity of complex neural circuits in vivo.


Assuntos
Canais Iônicos/biossíntese , Canais Iônicos/genética , Vias Neurais/metabolismo , Vias Neurais/efeitos da radiação , Animais , Contagem de Células , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Eletrofisiologia , Imuno-Histoquímica , Luz , Proteínas Luminescentes/biossíntese , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Vias Neurais/citologia , Neurônios/fisiologia , Bulbo Olfatório/fisiologia , Estimulação Luminosa , Regiões Promotoras Genéticas/genética
18.
J Neurosci ; 27(8): 2091-101, 2007 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-17314304

RESUMO

The mammalian olfactory system recognizes an enormous variety of odorants carrying a wide range of important behavioral cues. In the main olfactory bulb (MOB), odorants are ultimately represented through the action potential activity of mitral/tufted cells (M/Ts), whose selectivity and tuning to odorant molecules are therefore fundamental determinants of MOB sensory coding. However, the sheer number and diversity of discrete olfactory stimuli has been a major barrier to comprehensively evaluating M/T selectivity. To address this issue, we assessed M/T odorant responses in anesthetized mice to a 348-odorant panel widely and systematically distributed throughout chemical space, presented both individually and in mixtures at behaviorally relevant concentrations. We found that M/T activation by odorants was markedly selective, with neurons responding robustly, sensitively, and reliably to only a highly restricted subset of stimuli. Multiple odorants activating a single neuron commonly shared clear structural similarity, but M/T tuning also frequently extended beyond obviously defined chemical categories. Cells typically responded to effective compounds presented both individually and in mixtures, although firing rates evoked by mixtures typically showed partial suppression. Response selectivity was further confirmed in awake animals by chronic recordings of M/Ts. These data indicate that individual M/Ts encode specific odorant attributes shared by only a small fraction of compounds and imply that the MOB relays the collective molecular features of an odorant stimulus through a restricted set of M/Ts, each narrowly tuned to a particular stimulus characteristic.


Assuntos
Neurônios Aferentes/fisiologia , Odorantes , Bulbo Olfatório/fisiologia , Olfato/fisiologia , Animais , Fenômenos Químicos , Química , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Bulbo Olfatório/citologia , Limiar Sensorial
19.
J Neurosci ; 24(37): 8057-67, 2004 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-15371506

RESUMO

Synaptic interactions between the dendrites of mitral/tufted (MT) and granule cells (GCs) in the olfactory bulb are important for the determination of spatiotemporal firing patterns of MTs, which form an odor representation passed to higher brain centers. These synapses are subject to modulation from several sources originating both within and outside the bulb. We show that dopamine, presumably released by TH-positive local interneurons, reduces synaptic transmission from MTs to GCs. MT neurons express D2-like receptors (D2Rs), and both dopamine and the D2 agonist quinpirole decrease EPSC amplitude at the MT--> GC synapse. D2R activation also increases paired pulse facilitation and decreases the frequency of action potential-independent spontaneous miniature EPSCs in GCs, consistent with an effect on MT glutamate release downstream from Ca2+ influx. Analysis of spike-evoked Ca2+ transients in MT lateral dendrites additionally shows that quinpirole reduces Ca2+ influx preferentially at distal locations, possibly by reducing dendritic excitability via increased transient K+ channel availability. When the OB is activated physiologically by using odor stimuli, blocking D2Rs increases the power of GABA(A)-dependent oscillations in the local field potential. This demonstrates a functional role for the dopaminergic circuit during normal odor-evoked responses and for the modulation of dendritic release and excitability in neuronal circuit function. Regulation of spike invasion of lateral dendrites by transient K+ currents also may provide a mechanism for local outputs of MTs to be controlled dynamically via other neuromodulators or by postsynaptic potentials.


Assuntos
Dopamina/farmacologia , Neurônios/efeitos dos fármacos , Bulbo Olfatório/citologia , Sinapses/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , 4-Aminopiridina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Dendritos/fisiologia , Depressão Química , Agonistas de Dopamina/farmacologia , Potenciais Evocados/efeitos dos fármacos , Potenciais Evocados/fisiologia , Retroalimentação Fisiológica , Ácido Glutâmico/metabolismo , Transporte de Íons/efeitos dos fármacos , Masculino , Mamíferos/fisiologia , Neurônios/classificação , Neurônios/fisiologia , Odorantes , Técnicas de Patch-Clamp , Potássio/metabolismo , Canais de Potássio/metabolismo , Quimpirol/farmacologia , Rana pipiens , Receptores de Dopamina D2/agonistas , Receptores de GABA-A/fisiologia , Olfato/fisiologia , Ácido gama-Aminobutírico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA