Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Virol J ; 21(1): 5, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178163

RESUMO

Chikungunya virus (CHIKV) infection causes chikungunya, a viral disease that currently has no specific antiviral treatment. Several repurposed drug candidates have been investigated for the treatment of the disease. In order to improve the efficacy of the known drugs, combining drugs for treatment is a promising approach. The current study was undertaken to explore the antiviral activity of a combination of repurposed drugs that were reported to have anti-CHIKV activity. We explored the effect of different combinations of six effective drugs (2-fluoroadenine, emetine, lomibuvir, enalaprilat, metyrapone and resveratrol) at their non-toxic concentrations against CHIKV under post infection treatment conditions in Vero cells. Focus-forming unit assay, real time RT-PCR, immunofluorescence assay, and western blot were used to determine the virus titre. The results revealed that the combination of 2-fluoroadenine with either metyrapone or emetine or enalaprilat exerted inhibitory activity against CHIKV under post-infection treatment conditions. The effect of these drug combinations was additive in nature compared to the effect of the individual drugs. The results suggest an additive anti-viral effect of these drug combinations against CHIKV. The findings could serve as an outline for the development of an innovative therapeutic approach in the future to treat CHIKV-infected patients.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Animais , Chlorocebus aethiops , Humanos , Células Vero , Emetina/farmacologia , Emetina/uso terapêutico , Enalaprilato/farmacologia , Enalaprilato/uso terapêutico , Metirapona/farmacologia , Metirapona/uso terapêutico , Replicação Viral , Antivirais/farmacologia , Antivirais/uso terapêutico , Febre de Chikungunya/tratamento farmacológico , Combinação de Medicamentos
2.
BMC Immunol ; 24(1): 49, 2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036985

RESUMO

BACKGROUND: Tumor necrosis factor (TNF) is known to promote T cell migration and increase the expression of vascular endothelial growth factor (VEGF) and chemokines. The administration of Xpro-1595, a dominant-negative TNF (DN-TNF) engineered to selectively inactivate soluble TNF (solTNF), has been extensively studied and proven effective in reducing TNF production without suppressing innate immunity during infection. The literature also supports the involvement of glutamic acid-leucine-arginine (ELR+) chemokines and VEGF in angiogenesis and the spread of infections. MATERIALS AND METHODS: In this study, we administered Xpro-1595 to guinea pigs to selectively inhibit solTNF, aiming to assess its impact on Mycobacterium tuberculosis (M.tb) dissemination, bacterial growth attenuation, and immunological responses. We conducted immunohistochemical analyses, immunological assays, and colony enumeration to comprehensively study the effects of Xpro-1595 by comparing with anti-TB drugs treated M.tb infected guinea pigs. Throughout the infection and treatment period, we measured the levels of Interleukin-12 subunit alpha (IL-12), Interferon-gamma (IFN-γ), TNF, Tumor growth factor (TGF), and T lymphocytes using ELISA. RESULTS: Our findings revealed a reduction in M.tb dissemination and inflammation without compromising the immune response during Xpro-1595 treatment. Notably, Xpro-1595 therapy effectively regulated the expression of VEGFA and ELR + chemokines, which emerged as key factors contributing to infection dissemination. Furthermore, this treatment influenced the migration of CD4 T cells in the early stages of infection, subsequently leading to a reduced T cell response and controlled proinflammatory signalling, thus mitigating inflammation. CONCLUSION: Our study underscores the pivotal role of solTNF in the dissemination of M.tb to other organs. This preliminary investigation sheds light on the involvement of solTNF in the mechanisms underlying M.tb dissemination, although further in-depth research is warranted to fully elucidate its role in this process.


Assuntos
Produtos Biológicos , Mycobacterium tuberculosis , Animais , Cobaias , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular , Quimiocinas , Inflamação
3.
Indian J Med Res ; 158(1): 40-46, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37602585

RESUMO

Background & objectives: As CD4+ and CD8+ T lymphocyte numbers decline, the conventional, localized forms of tuberculosis shift to the atypical, disseminated forms. Variations in lymphocyte and immune cell expression levels affect how tuberculosis manifests in disseminated forms. Understanding the relationship between lymphocyte counts (CD4+ and CD8+) and pro-inflammatory cytokines such as tumour necrosis factor-alpha, interleukin-12 and interferon, we may therefore be able to shed light on how infections spread and suggest potential biomarkers for these immune factors. Methods: In this study, 15 guinea pigs were infected with Mycobacterium tuberculosis (M.tb) H37Rv strain and grouped into three groups of five each for further investigation. Serum samples and bronchoalveolar lavage (BAL) fluid were examined for the expression of pro-inflammatory cytokines and T-cell subsets in guinea pigs infected with pulmonary tuberculosis and disseminated tuberculosis. Results: We found that M.tb escapes macrophages due to pro-inflammatory cytokine dysregulation. Despite the protective immunity created by T-cells and cytokines, M.tb bacilli may spread to other organs due to inflammation induced by these immune components. A high number of T-cells and stimulated cytokine production are involved in triggering inflammation after necrotic tissue develops and tuberculosis spreads. Interpretation & conclusions: Our findings imply that increased bacilli in the spleen at the 8th wk of infection may be caused by the overexpression of CD4+ T-cell lymphocyte subsets and cytokines that generated inflammation during the 4th wk of infection. This is a pilot study with a small sample size and less assertive inference. Larger studies would be helpful to validate the results of the present investigation.


Assuntos
Citocinas , Mycobacterium tuberculosis , Animais , Cobaias , Linfócitos T , Projetos Piloto , Inflamação
5.
Front Cell Infect Microbiol ; 13: 1132538, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180434

RESUMO

The chikungunya virus (CHIKV) is an alphavirus transmitted by Aedes mosquitoes. There are no licenced antivirals or vaccines for treatment or prevention. Drug repurposing approach has emerged as a novel concept to find alternative uses of therapeutics to battle pathogens. In the present study, anti CHIKV activity of fourteen FDA-approved drugs was investigated by in vitro and in silico approaches. Focus-forming unit assay, immunofluorescence test, and quantitative RT-PCR assay were used to assess the in vitro inhibitory effect of these drugs against CHIKV in Vero CCL-81 cells. The findings showed that nine compounds, viz., temsirolimus, 2-fluoroadenine, doxorubicin, felbinac, emetine, lomibuvir, enalaprilat, metyrapone and resveratrol exhibit anti chikungunya activity. Furthermore, in silico molecular docking studies performed by targeting CHIKV structural and non-structural proteins revealed that these drugs can bind to structural protein targets such as envelope protein, and capsid, and non-structural proteins NSP2, NSP3 and NSP4 (RdRp). Findings from in vitro and in silico studies reveal that these drugs can suppress the infection and replication of CHIKV and further in vivo studies followed by clinical trials are warranted.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Animais , Simulação de Acoplamento Molecular , Reposicionamento de Medicamentos , Replicação Viral , Febre de Chikungunya/tratamento farmacológico , Antivirais/farmacologia , Antivirais/metabolismo
7.
Microbiol Spectr ; : e0319722, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36719189

RESUMO

The majority of preclinical research has shown that Mycobacterium tuberculosis can modify host lipids in various ways. To boost its intramacrophage survival, M. tuberculosis causes host lipids to build up, resulting in the development of lipid-laden foam cells. M. tuberculosis binds to and enters the macrophage via the cell membrane cholesterol. Aggregation of cholesterol in the cell wall of M. tuberculosis and an increase in vascularity at the granuloma site reduce the permeability of rifampicin and isoniazid concentrations. However, very few studies have assessed the effect of statins on drug penetration. Here, we used atorvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, to observe its effect on the bacterial burden by increasing the drug concentration at the infection site. We looked into how atorvastatin could be used in conjunction with first-line drugs to promote drug permeation. In this study, we detected an accumulation of drugs at the peripheral sites of the lungs and impaired drug distribution to the diseased sites. The efficacy of antituberculosis drugs, with atorvastatin as an adjunct, on the viability of M. tuberculosis cells was demonstrated. A nontoxic statin dosage established phenotypic and normal granuloma vasculature and showed an additive effect with rifampicin and isoniazid. Our data show that statins help to reduce the tuberculosis bacterial burden. Our findings reveal that the bacterial load is connected with impaired drug permeability resulting from lipid accumulation in the bacterial cell wall. Statin therapy combined with antituberculosis medications have the potential to improve treatment in tuberculosis patients. IMPORTANCE Mycobacterium tuberculosis binds to and enters the macrophage via the cell membrane cholesterol. M. tuberculosis limits phagosomal maturation and activation without engaging in phagocytosis. Aggregation of cholesterol in the cell wall of M. tuberculosis and an increase in the vascularity at the granuloma site reduce the permeability of rifampicin and isoniazid concentrations. However, very few studies have assessed the effect of statins on drug penetration, which can be increased through a reduction in cholesterol and vascularity. Herein, we used atorvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, to observe its effect on bacterial burden through increasing the drug concentration at the infection site. Our main research goal is to diminish mycobacterial dissemination and attenuate bacterial growth by increasing drug permeability.

8.
Front Cell Infect Microbiol ; 12: 1009901, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389170

RESUMO

Despite more than a decade of active study, tuberculosis (TB) remains a serious health concern across the world, and it is still the biggest cause of mortality in the human population. Pathogenic bacteria recognize host-induced responses and adapt to those hostile circumstances. This high level of adaptability necessitates a strong regulation of bacterial metabolic characteristics. Furthermore, the immune reponse of the host virulence factors such as host invasion, colonization, and survival must be properly coordinated by the pathogen. This can only be accomplished by close synchronization of gene expression. Understanding the molecular characteristics of mycobacterial pathogenesis in order to discover therapies that prevent or resolve illness relies on the bacterial capacity to adjust its metabolism and replication in response to various environmental cues as necessary. An extensive literature details the transcriptional alterations of host in response to in vitro environmental stressors, macrophage infection, and human illness. Various studies have recently revealed the finding of several microRNAs (miRNAs) that are believed to play an important role in the regulatory networks responsible for adaptability and virulence in Mycobacterium tuberculosis. We highlighted the growing data on the existence and quantity of several forms of miRNAs in the pathogenesis of M. tuberculosis, considered their possible relevance to disease etiology, and discussed how the miRNA-based signaling pathways regulate bacterial virulence factors.


Assuntos
MicroRNAs , Mycobacterium tuberculosis , Tuberculose dos Linfonodos , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
9.
Tuberculosis (Edinb) ; 135: 102224, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35763913

RESUMO

Pathogenic mycobacteria induce and accelerate blood vessel formation driven by extensive inflammation during granuloma formation, which is a central feature of mycobacterial pathogenesis. Tumor necrosis factor-alpha (TNF-α) enhances the expression of vascular endothelial growth factor (VEGF) and glutamic acid-leucine-arginine (ELR+) chemokines, which are potent inducers of vascularization. Most of the reported research work contends that VEGF growth factor induces neovascularization in human tuberculosis (TB) patients, but the evidence is inconclusive. Considerable ambiguity exists concerning the factors responsible for miliary tuberculosis. To identify such factors, we proposed an alternative explanation that could be found in miliary tuberculosis (MTB) cases. We performed a comparative analysis of angiogenic factors TNF-α, VEGF, and angiogenic ELR+ CXC and CC chemokine ligands in extrapulmonary tuberculosis (EPTB) and pulmonary tuberculosis (PTB) patients. To observe the relationship of these factors with the severity of bacterial burden, guinea pigs were infected with Mycobacterium tuberculosis (M.tb) and levels of the angiogenic factors were examined at different time intervals. Expression of these factors also exhibited a significant positive correlation with bacterial burden in other organs like the spleen, liver, and lymph nodes. We demonstrated statistical data on bacterial burden at different time points following the dissemination of infection in guinea pigs. In this study, we observed that there was a stimulated increase in the expression of ELR+ chemokines and VEGF in EPTB patients as compared to PTB patients. Following increased dissemination, the host immune response clears bacteria from the lungs during disease progression in guinea pigs.


Assuntos
Mycobacterium tuberculosis , Tuberculose Miliar , Tuberculose Pulmonar , Proteínas Adaptadoras de Transdução de Sinal , Animais , Moléculas de Adesão Celular , Quimiocinas , Guanilato Quinases , Cobaias , Humanos , Fator de Necrose Tumoral alfa , Fator A de Crescimento do Endotélio Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA