Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Bone Miner Res ; 36(1): 143-157, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32835424

RESUMO

In response to bone fracture, periosteal progenitor cells proliferate, expand, and differentiate to form cartilage and bone in the fracture callus. These cellular functions require the coordinated activation of multiple transcriptional programs, and the transcriptional regulators Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) regulate osteochondroprogenitor activation during endochondral bone development. However, recent observations raise important distinctions between the signaling mechanisms used to control bone morphogenesis and repair. Here, we tested the hypothesis that YAP and TAZ regulate osteochondroprogenitor activation during endochondral bone fracture healing in mice. Constitutive YAP and/or TAZ deletion from Osterix-expressing cells impaired both cartilage callus formation and subsequent mineralization. However, this could be explained either by direct defects in osteochondroprogenitor differentiation after fracture or by developmental deficiencies in the progenitor cell pool before fracture. Consistent with the second possibility, we found that developmental YAP/TAZ deletion produced long bones with impaired periosteal thickness and cellularity. Therefore, to remove the contributions of developmental history, we next generated adult onset-inducible knockout mice (using Osx-CretetOff ) in which YAP and TAZ were deleted before fracture but after normal development. Adult onset-induced YAP/TAZ deletion had no effect on cartilaginous callus formation but impaired bone formation at 14 days post-fracture (dpf). Earlier, at 4 dpf, adult onset-induced YAP/TAZ deletion impaired the proliferation and expansion of osteoblast precursor cells located in the shoulder of the callus. Further, activated periosteal cells isolated from this region at 4 dpf exhibited impaired osteogenic differentiation in vitro upon YAP/TAZ deletion. Finally, confirming the effects on osteoblast function in vivo, adult onset-induced YAP/TAZ deletion impaired bone formation in the callus shoulder at 7 dpf before the initiation of endochondral ossification. Together, these data show that YAP and TAZ promote the expansion and differentiation of periosteal osteoblast precursors to accelerate bone fracture healing. © 2020 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Fraturas Ósseas , Osteogênese , Animais , Calo Ósseo , Diferenciação Celular , Camundongos , Osteoblastos
2.
Sci Transl Med ; 11(495)2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31167930

RESUMO

Large bone defects cannot form a callus and exhibit high complication rates even with the best treatment strategies available. Tissue engineering approaches often use scaffolds designed to match the properties of mature bone. However, natural fracture healing is most efficient when it recapitulates development, forming bone via a cartilage intermediate (endochondral ossification). Because mechanical forces are critical for proper endochondral bone development and fracture repair, we hypothesized that recapitulating developmental mechanical forces would be essential for large bone defect regeneration in rats. Here, we engineered mesenchymal condensations that mimic the cellular organization and lineage progression of the early limb bud in response to local transforming growth factor-ß1 presentation from incorporated gelatin microspheres. We then controlled mechanical loading in vivo by dynamically tuning fixator compliance. Mechanical loading enhanced mesenchymal condensation-induced endochondral bone formation in vivo, restoring functional bone properties when load initiation was delayed to week 4 after defect formation. Live cell transplantation produced zonal human cartilage and primary spongiosa mimetic of the native growth plate, whereas condensation devitalization before transplantation abrogated bone formation. Mechanical loading induced regeneration comparable to high-dose bone morphogenetic protein-2 delivery, but without heterotopic bone formation and with order-of-magnitude greater mechanosensitivity. In vitro, mechanical loading promoted chondrogenesis and up-regulated pericellular matrix deposition and angiogenic gene expression. In vivo, mechanical loading regulated cartilage formation and neovascular invasion, dependent on load timing. This study establishes mechanical cues as key regulators of endochondral bone defect regeneration and provides a paradigm for recapitulating developmental programs for tissue engineering.


Assuntos
Regeneração Óssea/fisiologia , Engenharia Tecidual/métodos , Adulto , Desenvolvimento Ósseo/fisiologia , Proteína Morfogenética Óssea 2/metabolismo , Células Cultivadas , Condrogênese/fisiologia , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Microesferas , Alicerces Teciduais
3.
Tissue Eng Part A ; 25(23-24): 1623-1634, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30973074

RESUMO

Insufficient blood vessel supply is a primary limiting factor for regenerative approaches to large bone defect repair. Recombinant bone morphogenetic protein-2 (BMP-2) delivery induces robust bone formation and has been observed to enhance neovascularization, but whether the angiogenic effects of BMP-2 are due to direct endothelial cell stimulation or due to indirect paracrine signaling remain unclear. In this study, we evaluated the effects of BMP-2 delivery on vascularized bone regeneration and tested whether BMP-2 induces neovascularization directly or indirectly. We found that delivery of BMP-2 (5 µg) enhanced both bone formation and neovascularization in critically sized (8 mm) rat femoral bone defects; however, BMP-2 did not directly stimulate angiogenesis in vitro. In contrast, conditioned medium from both mesenchymal progenitor cells and osteoblasts induced endothelial cell migration in vitro, suggesting a paracrine mechanism of BMP-2 action. Consistent with this inference, codelivery of BMP-2 with endothelial colony forming cells to a heterotopic site, distant from the skeletal stem cell-rich bone marrow niche, induced ossification but had no effect on neovascularization. Taken together, these data suggest that paracrine activation of osteoprogenitor cells is an important contributor to neovascularization during BMP-2-mediated bone regeneration. Impact Statement In this study, we show that bone morphogenetic protein-2 (BMP-2) robustly induces neovascularization during tissue-engineered large bone defect regeneration, and we found that BMP-2 induced angiogenesis, in part, through paracrine signaling from osteoprogenitor cells.


Assuntos
Proteína Morfogenética Óssea 2/farmacologia , Regeneração Óssea/efeitos dos fármacos , Fêmur/fisiopatologia , Neovascularização Fisiológica/efeitos dos fármacos , Animais , Proteína Morfogenética Óssea 2/administração & dosagem , Movimento Celular/efeitos dos fármacos , Coristoma/patologia , Ensaio de Unidades Formadoras de Colônias , Meios de Cultivo Condicionados/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Feminino , Fêmur/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Ratos Sprague-Dawley
4.
J Cell Biol ; 218(4): 1369-1389, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30737263

RESUMO

Cell migration initiates by traction generation through reciprocal actomyosin tension and focal adhesion reinforcement, but continued motility requires adaptive cytoskeletal remodeling and adhesion release. Here, we asked whether de novo gene expression contributes to this cytoskeletal feedback. We found that global inhibition of transcription or translation does not impair initial cell polarization or migration initiation, but causes eventual migratory arrest through excessive cytoskeletal tension and over-maturation of focal adhesions, tethering cells to their matrix. The transcriptional coactivators YAP and TAZ mediate this feedback response, modulating cell mechanics by limiting cytoskeletal and focal adhesion maturation to enable persistent cell motility and 3D vasculogenesis. Motile arrest after YAP/TAZ ablation was partially rescued by depletion of the YAP/TAZ-dependent myosin phosphatase regulator, NUAK2, or by inhibition of Rho-ROCK-myosin II. Together, these data establish a transcriptional feedback axis necessary to maintain a responsive cytoskeletal equilibrium and persistent migration.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Movimento Celular , Citoesqueleto/metabolismo , Células Progenitoras Endoteliais/metabolismo , Adesões Focais/metabolismo , Mecanotransdução Celular , Neovascularização Fisiológica , Transativadores/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ciclo Celular/deficiência , Proteínas de Ciclo Celular/genética , Citoesqueleto/genética , Retroalimentação Fisiológica , Adesões Focais/genética , Cinética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miosina Tipo II/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transativadores/deficiência , Transativadores/genética , Transcrição Gênica , Proteínas de Sinalização YAP , Proteínas rho de Ligação ao GTP/metabolismo , Quinases Associadas a rho/metabolismo
5.
FASEB J ; 32(5): 2706-2721, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29401582

RESUMO

The functions of the paralogous transcriptional coactivators Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) in bone are controversial. Each has been observed to promote or inhibit osteogenesis in vitro, with reports of both equivalent and divergent functions. Their combinatorial roles in bone physiology are unknown. We report that combinatorial YAP/TAZ deletion from skeletal lineage cells, using Osterix-Cre, caused an osteogenesis imperfecta-like phenotype with severity dependent on allele dose and greater phenotypic expressivity with homozygous TAZ vs. YAP ablation. YAP/TAZ deletion decreased bone accrual and reduced intrinsic bone material properties through impaired collagen content and organization. These structural and material defects produced spontaneous fractures, particularly in mice with homozygous TAZ deletion and caused neonatal lethality in dual homozygous knockouts. At the cellular level in vivo, YAP/TAZ ablation reduced osteoblast activity and increased osteoclast activity, in an allele dose-dependent manner, impairing bone accrual and remodeling. Transcriptionally, YAP/TAZ deletion and small-molecule inhibition of YAP/TAZ interaction with the transcriptional coeffector TEAD reduced osteogenic and collagen-related gene expression, both in vivo and in vitro. These data demonstrate that YAP and TAZ combinatorially promote bone development through regulation of osteoblast activity, matrix quality, and osteoclastic remodeling.-Kegelman, C. D., Mason, D. E., Dawahare, J. H., Horan, D. J., Vigil, G. D., Howard, S. S., Robling, A. G., Bellido, T. M., Boerckel, J. D. Skeletal cell YAP and TAZ combinatorially promote bone development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Desenvolvimento Ósseo , Matriz Óssea/metabolismo , Remodelação Óssea , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Fosfoproteínas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ciclo Celular , Deleção de Genes , Camundongos , Camundongos Knockout , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/metabolismo , Osteogênese Imperfeita/patologia , Fosfoproteínas/genética , Transativadores , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA