RESUMO
Plants evolved several acquired tolerance traits for drought stress adaptation to maintain the cellular homeostasis. Drought stress at the anthesis stage in rice affects productivity due to the inefficiency of protein synthesis machinery. The effect of translational mechanisms on different pathways involved in cellular tolerance plays an important role. We report differential responses of translation-associated mechanisms in rice using polysome bound mRNA sequencing at anthesis stage drought stress in resistant Apo and sensitive IR64 genotypes. Apo maintained higher polysomes with 60 S-to-40 S and polysome-to-monosome ratios which directly correlate with protein levels under stress. IR64 has less protein levels under stress due to defective translation machinery and reduced water potential. Many polysome-bound long non-coding RNAs (lncRNA) were identified in both genotypes under drought, influencing translation. Apo had higher levels of N6-Methyladenosine (m6A) mRNA modifications that contributed for sustained translation. Translation machinery in Apo could maintain higher levels of photosynthetic machinery-associated proteins in drought stress, which maintain gas exchange, photosynthesis and yield under stress. The protein stability and ribosome biogenesis mechanisms favoured improved translation in Apo. The phytohormone signalling and transcriptional responses were severely affected in IR64. Our results demonstrate that, the higher translation ability of Apo favours maintenance of photosynthesis and physiological responses that are required for drought stress adaptation.
Assuntos
Resistência à Seca , Oryza , Oryza/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fotossíntese , Secas , Polirribossomos/metabolismo , Estresse Fisiológico/genéticaRESUMO
BACKGROUND: The unprecedented drought and frequent occurrence of pathogen infection in rice is becoming more due to climate change. Simultaneous occurrence of stresses lead to more crop loss. To cope up multiple stresses, the durable resistant cultivars needs to be developed, by identifying relevant genes from combined biotic and abiotic stress exposed plants. RESULTS: We studied the effect of drought stress, bacterial leaf blight disease causing Xanthomonas oryzae pv. oryzae (Xoo) pathogen infection and combined stress in contrasting BPT5204 and TN1 rice genotypes. Mild drought stress increased Xoo infection irrespective of the genotype. To identify relevant genes that could be used to develop multi-stress tolerant rice, RNA sequencing from individual drought, pathogen and combined stresses in contrasting genotypes has been developed. Many important genes are identified from resistant genotype and diverse group of genes are differentially expressed in contrasting genotypes under combined stress. Further, a meta-analysis from individual drought and Xoo pathogen stress from public domain data sets narrowed- down candidate differentially expressed genes. Many translation associated genes are differentially expressed suggesting their extra-ribosomal function in multi-stress adaptation. Overexpression of many of these genes showed their relevance in improving stress tolerance in rice by different scientific groups. In combined stress, many downregulated genes also showed their relevance in stress adaptation when they were over-expressed. CONCLUSIONS: Our study identifies many important genes, which can be used as molecular markers and targets for genetic manipulation to develop durable resistant rice cultivars. Strategies should be developed to activate downregulated genes, to improve multi-stress tolerance in plants.
Assuntos
Oryza , Xanthomonas , Secas , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/microbiologia , Transcriptoma , Xanthomonas/genéticaRESUMO
Drought-induced abscisic acid (ABA) accumulation plays a key role in plant water relations by regulating stomatal movements. Although ABA helps in the survival of the plants, reduced carbon gain affects plant productivity. To improve crop productivity under mild drought stress conditions, it is necessary to manipulate ABA responses. Other research groups have used forward chemical genomics for the identification of ABA agonists and antagonists aiming to manipulate ABA biosynthesis and signalling. In the present study, we identified indolyl-ethyl amine and serotonin small molecules using a reverse chemical genomics approach, with these acting as potent inhibitors of ABA biosynthesis through transient regulation of bZIP23 transcription factor activity. In rice, wheat and soybean, each of the small molecules enhanced the germination of seeds, even in the presence of ABA. These molecules nullified the effect of ABA on intact and detached leaves, resulting in higher photosynthesis. Furthermore, these small molecules effectively reduced the transcription levels of bZIP23 targeting NCED4, PP2C49 and CO3 genes. Rice plants treated with the small molecules were found to have improved stomatal conductance, spikelet fertility and yield compared to untreated plants under mild drought stress conditions. Our results suggest that indolyl-ethyl amine and serotonin small molecules could be utilized to improve yield under mild drought conditions.
Assuntos
Ácido Abscísico , Oryza , Ácido Abscísico/farmacologia , Carbono , Secas , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Fotossíntese , Serotonina , Fatores de Transcrição/genética , Água/metabolismoRESUMO
Reactive carbonyl compounds (RCCs) such as hydroxynonenol, malondialdehyde, acrolein, crotonaldehyde, methylglyoxal, and glyoxal accumulate at higher levels under stress in plants and damage the cell metabolic activities. Plants have evolved several detoxifying enzymes such as aldo-keto reductases (AKRs), aldehyde/alcohol dehydrogenases (ALDH/ADH), and glyoxalases. We report the phylogenetic relationship of these proteins and in silico analysis of rice-detoxifying protein structures and their substrate affinity with cofactors using docking and molecular simulation studies. Molecular simulations with nicotinamide adenine dinucleotide phosphate or glutathione cofactor docking with commonly known reactive substrates suggests that the AKRs, ALDH, and ADH proteins attain maximum conformational changes, whereas glyoxalase has fewer conformational changes with cofactor binding. Several AKRs showed a significant binding affinity with many RCCs. The rice microarray studies showed enhanced expression of many AKRs in resistant genotypes, which also showed higher affinity to RCCs, signifying their importance in managing carbonyl stress. The higher expression of AKRs is regulated by stress-responsive transcription factors (TFs) as we identified stress-specific cis-elements in their promoters. The study reports the stress-responsive nature of AKRs, their regulatory TFs, and their best RCC targets, which may be used for crop improvement programs.
RESUMO
Ribosomes play an integral part in plant growth, development, and defence responses. We report here the role of ribosomal protein large (RPL) subunit QM/RPL10 in nonhost disease resistance. The RPL10-silenced Nicotiana benthamiana plants showed compromised disease resistance against nonhost pathogen Pseudomonas syringae pv. tomato T1. The RNA-sequencing analysis revealed that many genes involved in defence and protein translation mechanisms were differentially affected due to silencing of NbRPL10. Arabidopsis AtRPL10 RNAi and rpl10 mutant lines showed compromised nonhost disease resistance to P. syringae pv. tomato T1 and P. syringae pv. tabaci. Overexpression of AtRPL10A in Arabidopsis resulted in reduced susceptibility against host pathogen P. syringae pv. tomato DC3000. RPL10 interacts with the RNA recognition motif protein and ribosomal proteins RPL30, RPL23, and RPS30 in the yeast two-hybrid assay. Silencing or mutants of genes encoding these RPL10-interacting proteins in N. benthamiana or Arabidopsis, respectively, also showed compromised disease resistance to nonhost pathogens. These results suggest that QM/RPL10 positively regulates the defence and translation-associated genes during nonhost pathogen infection.