Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Curr Biol ; 33(6): 1071-1081.e5, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36841238

RESUMO

Stomatal movement is orchestrated by diverse signaling cascades and metabolic activities in guard cells. Light triggers the opening of the pores through the phototropin-mediated pathway, which leads to the activation of plasma membrane H+-ATPase and thereby facilitates potassium accumulation through Kin+ channels. However, it remains poorly understood how phototropin signaling is fine-tuned to prevent excessive stomatal opening and consequent water loss. Here, we show that the stomatal response to light is negatively regulated by 12-oxo-phytodienoic acid (OPDA), an oxylipin metabolite produced through enzymatic oxygenation of polyunsaturated fatty acids (PUFAs). We identify a set of phospholipase-encoding genes, phospholipase (PLIP)1/2/3, which are transactivated rapidly in guard cells upon illumination in a phototropin-dependent manner. These phospholipases release PUFAs from the chloroplast membrane, which is oxidized by guard-cell lipoxygenases and further metabolized to OPDA. The OPDA-deficient mutants had wider stomatal pores, whereas mutants containing elevated levels of OPDA showed the opposite effect on stomatal aperture. Transmembrane solute fluxes that drive stomatal aperture were enhanced in lox6-1 guard cells, indicating that OPDA signaling ultimately impacts on activities of proton pumps and Kin+ channels. Interestingly, the accelerated stomatal kinetics in lox6-1 leads to increased plant growth without cost in water or macronutrient use. Together, our results reveal a new role for chloroplast membrane oxylipin metabolism in stomatal regulation. Moreover, the accelerated stomatal opening kinetics in OPDA-deficient mutants benefits plant growth and water use efficiency.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Oxilipinas/metabolismo , Fototropinas/metabolismo , Estômatos de Plantas/fisiologia , Luz , Cloroplastos/metabolismo
2.
J Cell Biol ; 222(2)2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36534166

RESUMO

The eukaryotic cytoskeleton plays essential roles in cell signaling and trafficking, broadly associated with immunity and diseases in humans and plants. To date, most studies describing cytoskeleton dynamics and function rely on qualitative/quantitative analyses of cytoskeletal images. While state-of-the-art, these approaches face general challenges: the diversity among filaments causes considerable inaccuracy, and the widely adopted image projection leads to bias and information loss. To solve these issues, we developed the Implicit Laplacian of Enhanced Edge (ILEE), an unguided, high-performance approach for 2D/3D-based quantification of cytoskeletal status and organization. Using ILEE, we constructed a Python library to enable automated cytoskeletal image analysis, providing biologically interpretable indices measuring the density, bundling, segmentation, branching, and directionality of the cytoskeleton. Our data demonstrated that ILEE resolves the defects of traditional approaches, enables the detection of novel cytoskeletal features, and yields data with superior accuracy, stability, and robustness. The ILEE toolbox is available for public use through PyPI and Google Colab.


Assuntos
Algoritmos , Citoesqueleto , Processamento de Imagem Assistida por Computador , Humanos , Processamento de Imagem Assistida por Computador/métodos , Microtúbulos , Plantas , Animais
3.
New Phytol ; 235(3): 1146-1162, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35488494

RESUMO

Abiotic and biotic environments influence a myriad of plant-related processes, including growth, development, and the establishment and maintenance of interaction(s) with microbes. In the case of the latter, elevated temperature has been shown to be a key factor that underpins host resistance and pathogen virulence. In this study, we elucidate a role for Arabidopsis NON-RACE-SPECIFIC DISEASE RESISTANCE1 (NDR1) by exploiting effector-triggered immunity to define the regulation of plant host immunity in response to both pathogen infection and elevated temperature. We generated time-series RNA sequencing data of WT Col-0, an NDR1 overexpression line, and ndr1 and ics1-2 mutant plants under elevated temperature. Not surprisingly, the NDR1-overexpression line showed genotype-specific gene expression changes related to defense response and immune system function. The results described herein support a role for NDR1 in maintaining cell signaling during simultaneous exposure to elevated temperature and avirulent pathogen stressors.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Plantas/metabolismo , Pseudomonas syringae , Temperatura , Fatores de Transcrição/metabolismo
4.
J Plant Physiol ; 268: 153585, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34894596

RESUMO

Stomatal immunity is mediated by ABA, an osmotic stress-responsive phytohormone that closes stomata via calcium-dependent and -independent signaling pathways. However, the functional involvement of ABA signal transducers in stomatal immunity remains poorly understood. Here, we demonstrate that stomatal immunity was compromised in mutants of the ABA signaling core. We also found that it is a subset of calcium-dependent protein kinases (CPK4/5/6), but not the calcium-independent kinase OST1, that relay the stomatal immune signaling. Surface-inoculated bacteria caused an endogenous ABA-dependent induction of local SA responses, whilst expression of the ABA biosynthetic genes and the ABA levels were not affected in leaf epidermis. Furthermore, flg22-elicited ROS burst was attenuated by mutations in CPK4 and CPK5, and pathogen-induced SA production in leaf epidermis was compromised in cpk4, cpk5, and cpk6 mutants. Our results suggest that CPKs function in stomatal immunity through fine-tuning apoplastic ROS levels as well as reinforcing the localized SA signal in guard cells. It is also envisioned that ABA mediates stomatal responses to biotic and abiotic stresses via two distinct but partially overlapping signaling modules.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis , Arabidopsis , Estômatos de Plantas , Transdução de Sinais , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cálcio , Proteínas Quinases Dependentes de Cálcio-Calmodulina , Mutação , Estômatos de Plantas/fisiologia , Espécies Reativas de Oxigênio
5.
Plant Sci ; 309: 110937, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34134844

RESUMO

Small GTP-binding proteins, also known as ROPs (Rho of Plants), are a subfamily of the Ras superfamily of signaling G-proteins and are required for numerous signaling processes, ranging from growth and development to biotic and abiotic signaling. In this study, we cloned and characterized wheat TaRop10, a homolog of Arabidopsis ROP10 and member of the class II ROP, and uncovered a role for TaRop10 in wheat response to Puccinia striiformis f. sp. tritici (Pst). TaRop10 was downregulated by actin depolymerization and was observed to be differentially induced by abiotic stress and the perception of plant hormones. A combination of yeast two-hybrid and bimolecular fluorescence complementation assays revealed that TaRop10 interacted with a h-type thioredoxin (TaTrxh9). Knocking-down of TaRop10 and TaTrxh9 was performed using the BSMV-VIGS (barley stripe mosaic virus-based virus-induced gene silencing) technique and revealed that TaRop10 and TaTrxh9 play a role in the negative regulation of defense signaling in response to Pst infection. In total, the data presented herein further illuminate our understanding of how intact plant cells accommodate fungal infection structures, and furthermore, support the function of TaRop10 and TaTrxh9 in negative modulation of defense signaling in response to stripe rust infection.


Assuntos
Proteínas de Arabidopsis/metabolismo , Resistência à Doença/genética , Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Puccinia/fisiologia , Triticum/enzimologia , Proteínas de Arabidopsis/genética , Regulação para Baixo , Proteínas de Ligação ao GTP/genética , Inativação Gênica , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico , Triticum/genética
6.
Plant Cell ; 33(2): 224-247, 2021 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-33681966

RESUMO

The broad host range of Fusarium virguliforme represents a unique comparative system to identify and define differentially induced responses between an asymptomatic monocot host, maize (Zea mays), and a symptomatic eudicot host, soybean (Glycine max). Using a temporal, comparative transcriptome-based approach, we observed that early gene expression profiles of root tissue from infected maize suggest that pathogen tolerance coincides with the rapid induction of senescence dampening transcriptional regulators, including ANACs (Arabidopsis thaliana NAM/ATAF/CUC protein) and Ethylene-Responsive Factors. In contrast, the expression of senescence-associated processes in soybean was coincident with the appearance of disease symptom development, suggesting pathogen-induced senescence as a key pathway driving pathogen susceptibility in soybean. Based on the analyses described herein, we posit that root senescence is a primary contributing factor underlying colonization and disease progression in symptomatic versus asymptomatic host-fungal interactions. This process also supports the lifestyle and virulence of F. virguliforme during biotrophy to necrotrophy transitions. Further support for this hypothesis lies in comprehensive co-expression and comparative transcriptome analyses, and in total, supports the emerging concept of necrotrophy-activated senescence. We propose that F. virguliforme conditions an environment within symptomatic hosts, which favors susceptibility through transcriptomic reprogramming, and as described herein, the induction of pathways associated with senescence during the necrotrophic stage of fungal development.


Assuntos
Fusarium/fisiologia , Glycine max/microbiologia , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Transcrição Gênica , Zea mays/microbiologia , Contagem de Colônia Microbiana , Fusarium/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Glycine max/genética , Fatores de Tempo , Fatores de Transcrição/metabolismo , Transcriptoma/genética , Zea mays/genética
7.
Plant Dis ; 105(10): 3250-3260, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33406860

RESUMO

The asymptomatic host range of Fusarium virguliforme includes corn, a common crop rotated with soybean that we hypothesize may alter F. virguliforme population dynamics and disease management. A field-based approach explored the temporal dynamics of F. virguliforme colonization of corn and soybean roots under different tillage and residue managements. Experiments were conducted in Iowa, Indiana, Michigan, and Wisconsin, United States and Ontario, Canada from 2016 to 2018. Corn and soybean roots were sampled at consecutive timepoints between 1 and 16 weeks after planting. DNA was extracted from all roots and analyzed by real-time quantitative PCR for F. virguliforme quantification. Trials were rotated between corn and soybean, containing a two-by-two factorial of tillage (no-tilled or tilled) and corn residue (with or without) in several experimental designs. In 2016, low amounts (approximately 100 fg per 10 mg of root tissue) of F. virguliforme were detected in the inoculated Iowa, Indiana, and Michigan locations and noninoculated Wisconsin corn fields. However, in 2017, greater levels of F. virguliforme DNA were detected in Iowa, Indiana, and Michigan across sampling timepoints. Tillage practices showed inconsistent effects on F. virguliforme root colonization and sudden death syndrome (SDS) foliar symptoms among trials and locations. However, residue management did not alter root colonization of corn or soybean by F. virguliforme. Plots with corn residue had greater SDS foliar disease index in Iowa in 2016. However, this trend was not observed across the site-years, indicating that corn residue may occasionally increase SDS foliar symptoms depending on the disease level and soil and weather factors.


Assuntos
Fusarium/patogenicidade , Glycine max , Doenças das Plantas/microbiologia , Zea mays , Ontário , Glycine max/microbiologia , Estados Unidos , Zea mays/microbiologia
8.
Mol Plant Microbe Interact ; 34(4): 426-438, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33297713

RESUMO

Thioredoxins (Trxs) function within the antioxidant network through modulation of one or more redox reactions involved in oxidative-stress signaling. Given their function in regulating cellular redox, Trx proteins also fulfill key roles in plant immune signaling. Here, TaTrxh1, encoding a subgroup h member of the Trx family, was identified and cloned in wheat (Triticum aestivum), which was rapidly induced by Puccinia striiformis f. sp. tritici invasion and salicylic acid (SA) treatment. Overexpression of TaTrxh1 in tobacco (Nicotiana benthamiana) induced programmed cell death. Silencing of TaTrxh1 in wheat enhanced susceptibility to P. striiformis f. sp. tritici in different aspects, including reactive oxygen species accumulation and pathogen-responsive or -related gene expression. Herein, we observed that the cellular concentration of SA was significantly reduced in TaTrxh1-silenced plants, indicating that TaTrxh1 possibly regulates wheat resistance to stripe rust through a SA-associated defense signaling pathway. Using a yeast two-hybrid screen to identify TaTrxh1-interacting partners, we further show that interaction with TaCP1 (a RD19-like cysteine protease) and subsequent silencing of TaCP1 reduced wheat resistance to P. striiformis f. sp. tritici. In total, the data presented herein demonstrate that TaTrxh1 enhances wheat resistance against P. striiformis f. sp. tritici via SA-dependent resistance signaling and that TaTrxh1 interaction with TaCP1 is required for wheat resistance to stripe rust.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Basidiomycota , Cisteína Proteases , Apoptose , Doenças das Plantas , Tiorredoxinas/genética , Triticum/genética
9.
CRC Crit Rev Plant Sci ; 39(1): 72-100, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33343063

RESUMO

Throughout their life span, plants confront an endless barrage of pathogens and pests. To successfully defend against biotic threats, plants have evolved a complex immune system responsible for surveillance, perception, and the activation of defense. Plant immunity requires multiple signaling processes, the outcome of which vary according to the lifestyle of the invading pathogen(s). In short, these processes require the activation of host perception, the regulation of numerous signaling cascades, and transcriptome reprograming, all of which are highly dynamic in terms of temporal and spatial scales. At the same time, the development of a single immune event is subjective to the development of plant immune system, which is co-regulated by numerous processes, including plant ontogenesis and the host microbiome. In total, insight into each of these processes provides a fuller understanding of the mechanisms that govern plant-pathogen interactions. In this review, we will discuss the "lifecycle" of plant immunity: the development of individual events of defense, including both local and distal processes, as well as the development and regulation of the overall immune system by ontogenesis regulatory genes and environmental microbiota. In total, we will integrate the output of recent discoveries and theories, together with several hypothetical models, to present a dynamic portrait of plant immunity.

10.
Nat Commun ; 11(1): 6234, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33277490

RESUMO

Pattern-triggered immunity and effector-triggered immunity are two primary forms of innate immunity in land plants. The molecular components and connecting nodes of pattern-triggered immunity and effector-triggered immunity are not fully understood. Here, we report that the Arabidopsis calcium-dependent protein kinase CPK3 is a key regulator of both pattern-triggered immunity and effector-triggered immunity. In vitro and in vivo phosphorylation assays, coupled with genetic and cell biology-based analyses, show that actin-depolymerization factor 4 (ADF4) is a physiological substrate of CPK3, and that phosphorylation of ADF4 by CPK3 governs actin cytoskeletal organization associated with pattern-triggered immunity. CPK3 regulates stomatal closure induced by flg22 and is required for resistance to Pst DC3000. Our data further demonstrates that CPK3 is required for resistance to Pst DC3000 carrying the effector AvrPphB. These results suggest that CPK3 is a missing link between cytoskeleton organization, pattern-triggered immunity and effector-triggered immunity.


Assuntos
Citoesqueleto de Actina/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Fatores de Despolimerização de Actina/genética , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Microscopia Confocal , Mutação , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Plantas Geneticamente Modificadas , Pseudomonas syringae/fisiologia , Homologia de Sequência de Aminoácidos
11.
Mol Plant Microbe Interact ; 33(12): 1354-1365, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33106084

RESUMO

This article is part of the Top 10 Unanswered Questions in MPMI invited review series.The past few decades have seen major discoveries in the field of molecular plant-microbe interactions. As the result of technological and intellectual advances, we are now able to answer questions at a level of mechanistic detail that we could not have imagined possible 20 years ago. The MPMI Editorial Board felt it was time to take stock and reassess. What big questions remain unanswered? We knew that to identify the fundamental, overarching questions that drive our research, we needed to do this as a community. To reach a diverse audience of people with different backgrounds and perspectives, working in different areas of plant-microbe interactions, we queried the more than 1,400 participants at the 2019 International Congress on Molecular Plant-Microbe Interactions meeting in Glasgow. This group effort resulted in a list of ten, broad-reaching, fundamental questions that influence and inform our research. Here, we introduce these Top 10 unanswered questions, giving context and a brief description of the issues. Each of these questions will be the subject of a detailed review in the coming months. We hope that this process of reflecting on what is known and unknown and identifying the themes that underlie our research will provide a framework to use going forward, giving newcomers a sense of the mystery of the big questions and inspiring new avenues and novel insights.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Interações Hospedeiro-Patógeno , Plantas , Pesquisa , Interações Hospedeiro-Patógeno/genética , Plantas/genética , Plantas/microbiologia , Pesquisa/tendências
12.
Biochem J ; 477(19): 3851-3866, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32955082

RESUMO

Tomato powdery mildew, caused by Oidium neolycopersici, is a fungal disease that results in severe yield loss in infected plants. Herein, we describe the function of a class of proteins, soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), which play a role in vesicle transport during defense signaling. To date, there have been no reports describing the function of tomato SNAREs during resistance signaling to powdery mildew. Using a combination of classical plant pathology-, genetics-, and cell biology-based approaches, we evaluate the role of ShNPSN11 in resistance to the powdery mildew pathogen O. neolycopersici. Quantitative RT-PCR analysis of tomato SNAREs revealed that ShNPSN11 mRNA accumulation in disease-resistant varieties was significantly increased following pathogen, compared with susceptible varieties, suggesting a role during induced defense signaling. Using in planta subcellular localization, we demonstrate that ShNPSN11 was primarily localized at the plasma membrane, consistent with the localization of SNARE proteins and their role in defense signaling and trafficking. Silencing of ShNPSN11 resulted in increased susceptibility to O. neolycopersici, with pathogen-induced levels of H2O2 and cell death elicitation in ShNPSN11-silenced lines showing a marked reduction. Transient expression of ShNPSN11 did not result in the induction of a hypersensitive cell death response or suppress cell death induced by BAX. Taken together, these data demonstrate that ShNPSNl11 plays an important role in defense activation and host resistance to O. neolycopersici in tomato LA1777.


Assuntos
Ascomicetos/crescimento & desenvolvimento , Resistência à Doença/genética , Doenças das Plantas , Proteínas de Plantas , Proteínas SNARE , Transdução de Sinais/genética , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transporte Proteico/genética , Proteínas SNARE/genética , Proteínas SNARE/metabolismo
13.
Plant Cell ; 32(4): 1161-1178, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32079667

RESUMO

Cytosolic mRNA translation is subject to global and mRNA-specific controls. Phosphorylation of the translation initiation factor eIF2α anchors a reversible regulatory switch that represses cytosolic translation globally. The stress-responsive GCN2 kinase is the only known kinase for eIF2α serine 56 in Arabidopsis (Arabidopsis thaliana). Here, we show that conditions that generate reactive oxygen species (ROS) in the chloroplast, including dark-light transitions, high light, and the herbicide methyl viologen, rapidly activated GCN2 kinase, whereas mitochondrial and endoplasmic reticulum stress did not. GCN2 activation was light dependent and mitigated by photosynthesis inhibitors and ROS quenchers. Accordingly, the seedling growth of multiple Arabidopsis gcn2 mutants was retarded under excess light conditions, implicating the GCN2-eIF2α pathway in responses to light and associated ROS. Once activated, GCN2 kinase preferentially suppressed the ribosome loading of mRNAs for functions such as mitochondrial ATP synthesis, the chloroplast thylakoids, vesicle trafficking, and translation. The gcn2 mutant overaccumulated transcripts functionally related to abiotic stress, including oxidative stress, as well as innate immune responses. Accordingly, gcn2 displayed defects in immune priming by the fungal elicitor, chitin. Therefore, we provide evidence that reactive oxygen species produced by the photosynthetic apparatus help activate the highly conserved GCN2 kinase, leading to eIF2α phosphorylation and thus affecting the status of the cytosolic protein synthesis apparatus.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/efeitos da radiação , Cloroplastos/metabolismo , Cloroplastos/efeitos da radiação , Luz , Biossíntese de Proteínas/efeitos da radiação , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Quitina/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Ontologia Genética , Herbicidas/toxicidade , Peróxido de Hidrogênio/farmacologia , Mutação/genética , Fosforilação/efeitos da radiação , Fotossíntese/efeitos dos fármacos , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , Ribossomos/efeitos da radiação , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/efeitos da radiação , Transcriptoma/genética
14.
Plant Cell ; 32(2): 336-351, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31852777

RESUMO

We exploited the broad host range of Fusarium virguliforme to identify differential fungal responses leading to either an endophytic or a pathogenic lifestyle during colonization of maize (Zea mays) and soybean (Glycine max), respectively. To provide a foundation to survey the transcriptomic landscape, we produced an improved de novo genome assembly and annotation of F. virguliforme using PacBio sequencing. Next, we conducted a high-resolution time course of F. virguliforme colonization and infection of both soybean, a symptomatic host, and maize, an asymptomatic host. Comparative transcriptomic analyses uncovered a nearly complete network rewiring, with less than 8% average gene coexpression module overlap upon colonizing the different plant hosts. Divergence of transcriptomes originating from host specific temporal induction genes is central to infection and colonization, including carbohydrate-active enzymes (CAZymes) and necrosis inducing effectors. Upregulation of Zn(II)-Cys6 transcription factors were uniquely induced in soybean at 2 d postinoculation, suggestive of enhanced pathogen virulence on soybean. In total, the data described herein suggest that F. virguliforme modulates divergent infection profiles through transcriptional plasticity.


Assuntos
Fusarium/genética , Fusarium/metabolismo , Glycine max/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Zea mays/metabolismo , Fusarium/crescimento & desenvolvimento , Fusarium/patogenicidade , Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Genoma Fúngico , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Glycine max/microbiologia , Transcriptoma , Zea mays/microbiologia
15.
Plant Biotechnol (Tokyo) ; 36(2): 119-123, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31768113

RESUMO

Transient protein expression is an effective tool to rapidly unravel novel gene functions, such as transcriptional activity of promoters and sub-cellular localization of proteins. However, transient expression is not applicable to some species and varieties because of insufficient expression levels. We recently developed one of the strongest agroinfiltration-based transient protein expression systems for plant cells, termed 'Tsukuba system.' About 4 mg/g fresh weight of protein expression in Nicotiana benthamiana was obtained using this system. The vector pBYR2HS, which contains a geminiviral replication system and a double terminator, can be used in various plant species and varieties, including lettuces, eggplants, tomatoes, hot peppers, and orchids. In this study, we assessed the applicability of the Tsukuba system to several species of legumes, including Lotus japonicus, soybean Glycine max, and common bean Phaseolus vulgaris. The GFP protein was transiently expressed in the seedpods of all examined legume species, however, protein expression in leaves was observed only in P. vulgaris. Taken together, our system is an effective tool to examine gene function rapidly in several legume species based on transient protein expression.

16.
Plant Sci ; 285: 200-213, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31203885

RESUMO

NONRACE-SPECIFIC DISEASE RESISTANCE (NDR1) is a widely characterized gene that plays a key role in defense against multiple bacterial, fungal, oomycete and nematode plant pathogens. NDR1 is required for activation of resistance by multiple NB and LRR-containing (NLR) protein immune sensors and contributes to basal defense. The role of NDR1 in positively regulating salicylic acid (SA)-mediated plant defense responses is well documented. However, ndr1-1 plants flower earlier and show accelerated development in comparison to wild type (WT) Arabidopsis plants, indicating that NDR1 is a negative regulator of flowering and growth. Exogenous application of gibberellic acid (GA) further accelerates the early flowering phenotype in ndr1-1 plants, while the GA biosynthesis inhibitor paclobutrazol attenuated the early flowering phenotype of ndr1-1, but not to WT levels, suggesting partial resistance to paclobutrazol and enhanced GA response in ndr1-1 plants. Mass spectroscopy analyses confirmed that ndr1-1 plants have 30-40% higher levels of GA3 and GA4, while expression of various GA metabolic genes and major flowering regulatory genes is also altered in the ndr1-1 mutant. Taken together this study provides evidence of crosstalk between the ndr1-1-mediated defense and GA-regulated developmental programs in plants.


Assuntos
Arabidopsis/genética , Flores/crescimento & desenvolvimento , Giberelinas/fisiologia , Reguladores de Crescimento de Plantas/fisiologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/fisiologia , Resistência à Doença/genética , Resistência à Doença/fisiologia , Giberelinas/metabolismo , Mutação/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Ácido Salicílico/metabolismo , Fatores de Transcrição/fisiologia , Transcriptoma , Verticillium
17.
Plant Cell Environ ; 42(9): 2664-2680, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31038756

RESUMO

The actin-related protein 2/3 complex (Arp2/3 complex), a key regulator of actin cytoskeletal dynamics, has been linked to multiple cellular processes, including those associated with response to stress. Herein, the Solanum habrochaites ARPC3 gene, encoding a subunit protein of the Arp2/3 complex, was identified and characterized. ShARPC3 encodes a 174-amino acid protein possessing a conserved P21-Arc domain. Silencing of ShARPC3 resulted in enhanced susceptibility to the powdery mildew pathogen Oidium neolycopersici (On-Lz), demonstrating a role for ShARPC3 in defence signalling. Interestingly, a loss of ShARPC3 coincided with enhanced susceptibility to On-Lz, a process that we hypothesize is the result of a block in the activity of SA-mediated defence signalling. Conversely, overexpression of ShARPC3 in Arabidopsis thaliana, followed by inoculation with On-Lz, showed enhanced resistance, including the rapid induction of hypersensitive cell death and the generation of reactive oxygen. Heterologous expression of ShARPC3 in the arc18 mutant of Saccharomyces cerevisiae (i.e., ∆arc18) resulted in complementation of stress-induced phenotypes, including high-temperature tolerance. Taken together, these data support a role for ShARPC3 in tomato through positive regulation of plant immunity in response to O. neolycopersici pathogenesis.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Ascomicetos/fisiologia , Resistência à Doença , Interações Hospedeiro-Patógeno , Solanum lycopersicum/fisiologia , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Sequência de Aminoácidos , Reguladores de Crescimento de Plantas/metabolismo
18.
New Phytol ; 222(3): 1474-1492, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30663769

RESUMO

Biotrophic fungal plant pathogens can balance their virulence and form intricate relationships with their hosts. Sometimes, this leads to systemic host colonization over long time scales without macroscopic symptoms. However, how plant-pathogenic endophytes manage to establish their sustained systemic infection remains largely unknown. Here, we present a genomic and transcriptomic analysis of Thecaphora thlaspeos. This relative of the well studied grass smut Ustilago maydis is the only smut fungus adapted to Brassicaceae hosts. Its ability to overwinter with perennial hosts and its systemic plant infection including roots are unique characteristics among smut fungi. The T. thlaspeos genome was assembled to the chromosome level. It is a typical smut genome in terms of size and genome characteristics. In silico prediction of candidate effector genes revealed common smut effector proteins and unique members. For three candidates, we have functionally demonstrated effector activity. One of these, TtTue1, suggests a potential link to cold acclimation. On the plant side, we found evidence for a typical immune response as it is present in other infection systems, despite the absence of any macroscopic symptoms during infection. Our findings suggest that T. thlaspeos distinctly balances its virulence during biotrophic growth ultimately allowing for long-lived infection of its perennial hosts.


Assuntos
Basidiomycota/genética , Brassicaceae/microbiologia , Proteínas Fúngicas/metabolismo , Genoma Fúngico , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Transcriptoma/genética , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/microbiologia , Basidiomycota/patogenicidade , Brassicaceae/imunologia , Sequência Conservada , Proteínas Fúngicas/química , Regulação Fúngica da Expressão Gênica , Ontologia Genética , Anotação de Sequência Molecular , Filogenia , Plantas Geneticamente Modificadas , Ácido Salicílico/metabolismo , Especificidade da Espécie , Sintenia/genética , Zea mays/microbiologia
19.
Mol Plant Microbe Interact ; 32(1): 25-34, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30355064

RESUMO

The plant immune system comprises a complex network of signaling processes, regulated not only by classically defined immune components (e.g., resistance genes) but also by a suite of developmental, environmental, abiotic, and biotic-associated factors. In total, it is the sum of these interactions-the connectivity to a seemingly endless array of environments-that ensures proper activation, and control, of a system that is responsible for cell surveillance and response to threats presented by invading pests and pathogens. Over the past decade, the field of plant pathology has witnessed the discovery of numerous points of convergence between immunity, growth, and development, as well as overlap with seemingly disparate processes such as those that underpin plant response to changes in the environment. Toward defining how immune signaling is regulated, recent studies have focused on dissecting the mechanisms that underpin receptor-ligand interactions, phospho-regulation of signaling cascades, and the modulation of host gene expression during infection. As one of the major regulators of these immune signaling cascades, the plant cytoskeleton is the stage from which immune-associated processes are mobilized and oriented and, in this role, it controls the movement of the organelles, proteins, and chemical signals that support plant defense signaling. In short, the cytoskeleton is the battlefield from which pathogens and plants volley virulence and resistance, transforming resistance to susceptibility. Herein, we discuss the role of the eukaryotic cytoskeleton as a platform for the function of the plant immune system.


Assuntos
Citoesqueleto , Imunidade Vegetal , Regulação da Expressão Gênica de Plantas , Plantas/anatomia & histologia , Plantas/imunologia , Transdução de Sinais
20.
New Phytol ; 222(2): 981-994, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30552820

RESUMO

Plants mount coordinated immune responses to defend themselves against pathogens. However, the cellular components required for plant immunity are not fully understood. The jasmonate-mimicking coronatine (COR) toxin produced by Pseudomonas syringae pv. tomato (Pst) DC3000 functions to overcome plant immunity. We previously isolated eight Arabidopsis (scord) mutants that exhibit increased susceptibility to a COR-deficient mutant of PstDC3000. Among them, the scord6 mutant exhibits defects both in stomatal closure response and in restricting bacterial multiplication inside the apoplast. However, the identity of SCORD6 remained elusive. In this study, we aim to identify the SCORD6 gene. We identified SCORD6 via next-generation sequencing and found it to be MURUS1 (MUR1), which is involved in the biosynthesis of GDP-l-fucose. Discovery of SCORD6 as MUR1 led to a series of experiments that revealed a multi-faceted role of l-fucose biosynthesis in stomatal and apoplastic defenses as well as in pattern-triggered immunity and effector-triggered immunity, including glycosylation of pattern-recognition receptors. Furthermore, compromised stomatal and/or apoplastic defenses were observed in mutants of several fucosyltransferases with specific substrates (e.g. O-glycan, N-glycan or the DELLA transcriptional repressors). Collectively, these results uncover a novel and broad role of l-fucose and protein fucosylation in plant immunity.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/imunologia , Fucose/biossíntese , Genes de Plantas , Imunidade Vegetal/genética , Proteínas de Arabidopsis/metabolismo , Fucosiltransferases/metabolismo , Glicosilação , Mutação/genética , Fenótipo , Estômatos de Plantas/fisiologia , Polissacarídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA