Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
1.
Res Sq ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38585969

RESUMO

The pathophysiological mechanisms driving disease progression of frontotemporal lobar degeneration (FTLD) and corresponding biomarkers are not fully understood. We leveraged aptamer-based proteomics (> 4,000 proteins) to identify dysregulated communities of co-expressed cerebrospinal fluid proteins in 116 adults carrying autosomal dominant FTLD mutations (C9orf72, GRN, MAPT) compared to 39 noncarrier controls. Network analysis identified 31 protein co-expression modules. Proteomic signatures of genetic FTLD clinical severity included increased abundance of RNA splicing (particularly in C9orf72 and GRN) and extracellular matrix (particularly in MAPT) modules, as well as decreased abundance of synaptic/neuronal and autophagy modules. The generalizability of genetic FTLD proteomic signatures was tested and confirmed in independent cohorts of 1) sporadic progressive supranuclear palsy-Richardson syndrome and 2) frontotemporal dementia spectrum syndromes. Network-based proteomics hold promise for identifying replicable molecular pathways in adults living with FTLD. 'Hub' proteins driving co-expression of affected modules warrant further attention as candidate biomarkers and therapeutic targets.

2.
Alzheimers Dement ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38666355

RESUMO

INTRODUCTION: Amyloid beta and tau pathology are the hallmarks of sporadic Alzheimer's disease (AD) and autosomal dominant AD (ADAD). However, Lewy body pathology (LBP) is found in ≈ 50% of AD and ADAD brains. METHODS: Using an α-synuclein seed amplification assay (SAA) in cerebrospinal fluid (CSF) from asymptomatic (n = 26) and symptomatic (n = 27) ADAD mutation carriers, including 12 with known neuropathology, we investigated the timing of occurrence and prevalence of SAA positive reactivity in ADAD in vivo. RESULTS: No asymptomatic participant and only 11% (3/27) of the symptomatic patients tested SAA positive. Neuropathology revealed LBP in 10/12 cases, primarily affecting the amygdala or the olfactory areas. In the latter group, only the individual with diffuse LBP reaching the neocortex showed α-synuclein seeding activity in CSF in vivo. DISCUSSION: Results suggest that in ADAD LBP occurs later than AD pathology and often as amygdala- or olfactory-predominant LBP, for which CSF α-synuclein SAA has low sensitivity. HIGHLIGHTS: Cerebrospinal fluid (CSF) real-time quaking-induced conversion (RT-QuIC) detects misfolded α-synuclein in ≈ 10% of symptomatic autosomal dominant Alzheimer's disease (ADAD) patients. CSF RT-QuIC does not detect α-synuclein seeding activity in asymptomatic mutation carriers. Lewy body pathology (LBP) in ADAD mainly occurs as olfactory only or amygdala-predominant variants. LBP develops late in the disease course in ADAD. CSF α-synuclein RT-QuIC has low sensitivity for focal, low-burden LBP.

3.
JAMA Neurol ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619853

RESUMO

Importance: Factors associated with clinical heterogeneity in Alzheimer disease (AD) lay along a continuum hypothesized to associate with tangle distribution and are relevant for understanding glial activation considerations in therapeutic advancement. Objectives: To examine clinicopathologic and neuroimaging characteristics of disease heterogeneity in AD along a quantitative continuum using the corticolimbic index (CLix) to account for individuality of spatially distributed tangles found at autopsy. Design, Setting, and Participants: This cross-sectional study was a retrospective medical record review performed on the Florida Autopsied Multiethnic (FLAME) cohort accessioned from 1991 to 2020. Data were analyzed from December 2022 to December 2023. Structural magnetic resonance imaging (MRI) and tau positron emission tomography (PET) were evaluated in an independent neuroimaging group. The FLAME cohort includes 2809 autopsied individuals; included in this study were neuropathologically diagnosed AD cases (FLAME-AD). A digital pathology subgroup of FLAME-AD cases was derived for glial activation analyses. Main Outcomes and Measures: Clinicopathologic factors of heterogeneity that inform patient history and neuropathologic evaluation of AD; CLix score (lower, relative cortical predominance/hippocampal sparing vs higher, relative cortical sparing/limbic predominant cases); neuroimaging measures (ie, structural MRI and tau-PET). Results: Of the 2809 autopsied individuals in the FLAME cohort, 1361 neuropathologically diagnosed AD cases were evaluated. A digital pathology subgroup included 60 FLAME-AD cases. The independent neuroimaging group included 93 cases. Among the 1361 FLAME-AD cases, 633 were male (47%; median [range] age at death, 81 [54-96] years) and 728 were female (53%; median [range] age at death, 81 [53-102] years). A younger symptomatic onset (Spearman ρ = 0.39, P < .001) and faster decline on the Mini-Mental State Examination (Spearman ρ = 0.27; P < .001) correlated with a lower CLix score in FLAME-AD series. Cases with a nonamnestic syndrome had lower CLix scores (median [IQR], 13 [9-18]) vs not (median [IQR], 21 [15-27]; P < .001). Hippocampal MRI volume (Spearman ρ = -0.45; P < .001) and flortaucipir tau-PET uptake in posterior cingulate and precuneus cortex (Spearman ρ = -0.74; P < .001) inversely correlated with CLix score. Although AD cases with a CLix score less than 10 had higher cortical tangle count, we found lower percentage of CD68-activated microglia/macrophage burden (median [IQR], 0.46% [0.32%-0.75%]) compared with cases with a CLix score of 10 to 30 (median [IQR], 0.75% [0.51%-0.98%]) and on par with a CLix score of 30 or greater (median [IQR], 0.40% [0.32%-0.57%]; P = .02). Conclusions and Relevance: Findings show that AD heterogeneity exists along a continuum of corticolimbic tangle distribution. Reduced CD68 burden may signify an underappreciated association between tau accumulation and microglia/macrophages activation that should be considered in personalized therapy for immune dysregulation.

4.
Epilepsia ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625055

RESUMO

Febrile infection-related epilepsy syndrome (FIRES) is a subset of new onset refractory status epilepticus (NORSE) that involves a febrile infection prior to the onset of the refractory status epilepticus. It is unclear whether FIRES and non-FIRES NORSE are distinct conditions. Here, we compare 34 patients with FIRES to 30 patients with non-FIRES NORSE for demographics, clinical features, neuroimaging, and outcomes. Because patients with FIRES were younger than patients with non-FIRES NORSE (median = 28 vs. 48 years old, p = .048) and more likely cryptogenic (odds ratio = 6.89), we next ran a regression analysis using age or etiology as a covariate. Respiratory and gastrointestinal prodromes occurred more frequently in FIRES patients, but no difference was found for non-infection-related prodromes. Status epilepticus subtype, cerebrospinal fluid (CSF) and magnetic resonance imaging findings, and outcomes were similar. However, FIRES cases were more frequently cryptogenic; had higher CSF interleukin 6, CSF macrophage inflammatory protein-1 alpha (MIP-1a), and serum chemokine ligand 2 (CCL2) levels; and received more antiseizure medications and immunotherapy. After controlling for age or etiology, no differences were observed in presenting symptoms and signs or inflammatory biomarkers, suggesting that FIRES and non-FIRES NORSE are very similar conditions.

5.
Lancet Neurol ; 23(5): 500-510, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631766

RESUMO

BACKGROUND: In people with genetic forms of Alzheimer's disease, such as in Down syndrome and autosomal-dominant Alzheimer's disease, pathological changes specific to Alzheimer's disease (ie, accumulation of amyloid and tau) occur in the brain at a young age, when comorbidities related to ageing are not present. Studies including these cohorts could, therefore, improve our understanding of the early pathogenesis of Alzheimer's disease and be useful when designing preventive interventions targeted at disease pathology or when planning clinical trials. We compared the magnitude, spatial extent, and temporal ordering of tau spread in people with Down syndrome and autosomal-dominant Alzheimer's disease. METHODS: In this cross-sectional observational study, we included participants (aged ≥25 years) from two cohort studies. First, we collected data from the Dominantly Inherited Alzheimer's Network studies (DIAN-OBS and DIAN-TU), which include carriers of autosomal-dominant Alzheimer's disease genetic mutations and non-carrier familial controls recruited in Australia, Europe, and the USA between 2008 and 2022. Second, we collected data from the Alzheimer Biomarkers Consortium-Down Syndrome study, which includes people with Down syndrome and sibling controls recruited from the UK and USA between 2015 and 2021. Controls from the two studies were combined into a single group of familial controls. All participants had completed structural MRI and tau PET (18F-flortaucipir) imaging. We applied Gaussian mixture modelling to identify regions of high tau PET burden and regions with the earliest changes in tau binding for each cohort separately. We estimated regional tau PET burden as a function of cortical amyloid burden for both cohorts. Finally, we compared the temporal pattern of tau PET burden relative to that of amyloid. FINDINGS: We included 137 people with Down syndrome (mean age 38·5 years [SD 8·2], 74 [54%] male, and 63 [46%] female), 49 individuals with autosomal-dominant Alzheimer's disease (mean age 43·9 years [11·2], 22 [45%] male, and 27 [55%] female), and 85 familial controls, pooled from across both studies (mean age 41·5 years [12·1], 28 [33%] male, and 57 [67%] female), who satisfied the PET quality-control procedure for tau-PET imaging processing. 134 (98%) people with Down syndrome, 44 (90%) with autosomal-dominant Alzheimer's disease, and 77 (91%) controls also completed an amyloid PET scan within 3 years of tau PET imaging. Spatially, tau PET burden was observed most frequently in subcortical and medial temporal regions in people with Down syndrome, and within the medial temporal lobe in people with autosomal-dominant Alzheimer's disease. Across the brain, people with Down syndrome had greater concentrations of tau for a given level of amyloid compared with people with autosomal-dominant Alzheimer's disease. Temporally, increases in tau were more strongly associated with increases in amyloid for people with Down syndrome compared with autosomal-dominant Alzheimer's disease. INTERPRETATION: Although the general progression of amyloid followed by tau is similar for people Down syndrome and people with autosomal-dominant Alzheimer's disease, we found subtle differences in the spatial distribution, timing, and magnitude of the tau burden between these two cohorts. These differences might have important implications; differences in the temporal pattern of tau accumulation might influence the timing of drug administration in clinical trials, whereas differences in the spatial pattern and magnitude of tau burden might affect disease progression. FUNDING: None.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Síndrome de Down , Masculino , Feminino , Humanos , Adulto , Doença de Alzheimer/genética , Estudos Transversais , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Amiloide , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Disfunção Cognitiva/patologia
6.
JAMA Neurol ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683602

RESUMO

Importance: Effects of antiamyloid agents, targeting either fibrillar or soluble monomeric amyloid peptides, on downstream biomarkers in cerebrospinal fluid (CSF) and plasma are largely unknown in dominantly inherited Alzheimer disease (DIAD). Objective: To investigate longitudinal biomarker changes of synaptic dysfunction, neuroinflammation, and neurodegeneration in individuals with DIAD who are receiving antiamyloid treatment. Design, Setting, and Participants: From 2012 to 2019, the Dominantly Inherited Alzheimer Network Trial Unit (DIAN-TU-001) study, a double-blind, placebo-controlled, randomized clinical trial, investigated gantenerumab and solanezumab in DIAD. Carriers of gene variants were assigned 3:1 to either drug or placebo. The present analysis was conducted from April to June 2023. DIAN-TU-001 spans 25 study sites in 7 countries. Biofluids and neuroimaging from carriers of DIAD gene variants in the gantenerumab, solanezumab, and placebo groups were analyzed. Interventions: In 2016, initial dosing of gantenerumab, 225 mg (subcutaneously every 4 weeks) was increased every 8 weeks up to 1200 mg. In 2017, initial dosing of solanezumab, 400 mg (intravenously every 4 weeks) was increased up to 1600 mg every 4 weeks. Main Outcomes and Measures: Longitudinal changes in CSF levels of neurogranin, soluble triggering receptor expressed on myeloid cells 2 (sTREM2), chitinase 3-like 1 protein (YKL-40), glial fibrillary acidic protein (GFAP), neurofilament light protein (NfL), and plasma levels of GFAP and NfL. Results: Of 236 eligible participants screened, 43 were excluded. A total of 142 participants (mean [SD] age, 44 [10] years; 72 female [51%]) were included in the study (gantenerumab, 52 [37%]; solanezumab, 50 [35%]; placebo, 40 [28%]). Relative to placebo, gantenerumab significantly reduced CSF neurogranin level at year 4 (mean [SD] ß = -242.43 [48.04] pg/mL; P < .001); reduced plasma GFAP level at year 1 (mean [SD] ß = -0.02 [0.01] ng/mL; P = .02), year 2 (mean [SD] ß = -0.03 [0.01] ng/mL; P = .002), and year 4 (mean [SD] ß = -0.06 [0.02] ng/mL; P < .001); and increased CSF sTREM2 level at year 2 (mean [SD] ß = 1.12 [0.43] ng/mL; P = .01) and year 4 (mean [SD] ß = 1.06 [0.52] ng/mL; P = .04). Solanezumab significantly increased CSF NfL (log) at year 4 (mean [SD] ß = 0.14 [0.06]; P = .02). Correlation analysis for rates of change found stronger correlations between CSF markers and fluid markers with Pittsburgh compound B positron emission tomography for solanezumab and placebo. Conclusions and Relevance: This randomized clinical trial supports the importance of fibrillar amyloid reduction in multiple AD-related processes of neuroinflammation and neurodegeneration in CSF and plasma in DIAD. Additional studies of antiaggregated amyloid therapies in sporadic AD and DIAD are needed to determine the utility of nonamyloid biomarkers in determining disease modification. Trial Registration: ClinicalTrials.gov Identifier: NCT04623242.

7.
JAMA Neurol ; 81(5): 525-533, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38497971

RESUMO

Importance: Rapid and accurate diagnosis of autoimmune encephalitis encourages prompt initiation of immunotherapy toward improved patient outcomes. However, clinical features alone may not sufficiently narrow the differential diagnosis, and awaiting autoantibody results can delay immunotherapy. Objective: To identify simple magnetic resonance imaging (MRI) characteristics that accurately distinguish 2 common forms of autoimmune encephalitis, LGI1- and CASPR2-antibody encephalitis (LGI1/CASPR2-Ab-E), from 2 major differential diagnoses, viral encephalitis (VE) and Creutzfeldt-Jakob disease (CJD). Design, Setting, and Participants: This cross-sectional study involved a retrospective, blinded analysis of the first available brain MRIs (taken 2000-2022) from 192 patients at Oxford University Hospitals in the UK and Mayo Clinic in the US. These patients had LGI1/CASPR2-Ab-E, VE, or CJD as evaluated by 2 neuroradiologists (discovery cohort; n = 87); findings were validated in an independent cohort by 3 neurologists (n = 105). Groups were statistically compared with contingency tables. Data were analyzed in 2023. Main Outcomes and Measures: MRI findings including T2 or fluid-attenuated inversion recovery (FLAIR) hyperintensities, swelling or volume loss, presence of gadolinium contrast enhancement, and diffusion-weighted imaging changes. Correlations with clinical features. Results: Among 192 participants with MRIs reviewed, 71 were female (37%) and 121 were male (63%); the median age was 66 years (range, 19-92 years). By comparison with VE and CJD, in LGI1/CASPR2-Ab-E, T2 and/or FLAIR hyperintensities were less likely to extend outside the temporal lobe (3/42 patients [7%] vs 17/18 patients [94%] with VE; P < .001, and 3/4 patients [75%] with CJD; P = .005), less frequently exhibited swelling (12/55 [22%] with LGI1/CASPR2-Ab-E vs 13/22 [59%] with VE; P = .003), and showed no diffusion restriction (0 patients vs 16/22 [73%] with VE and 8/10 [80%] with CJD; both P < .001) and rare contrast enhancement (1/20 [5%] vs 7/17 [41%] with VE; P = .01). These findings were validated in an independent cohort and generated an area under the curve of 0.97, sensitivity of 90%, and specificity of 95% among cases with T2/FLAIR hyperintensity in the hippocampus and/or amygdala. Conclusions and Relevance: In this study, T2 and/or FLAIR hyperintensities confined to the temporal lobes, without diffusion restriction or contrast enhancement, robustly distinguished LGI1/CASPR2-Ab-E from key differential diagnoses. These observations should assist clinical decision-making toward expediting immunotherapy. Their generalizability to other forms of autoimmune encephalitis and VE should be examined in future studies.


Assuntos
Autoanticorpos , Encefalite , Peptídeos e Proteínas de Sinalização Intracelular , Imageamento por Ressonância Magnética , Proteínas de Membrana , Proteínas do Tecido Nervoso , Humanos , Masculino , Feminino , Idoso , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética/métodos , Estudos Transversais , Autoanticorpos/imunologia , Encefalite/diagnóstico por imagem , Encefalite/imunologia , Encefalite/patologia , Estudos Retrospectivos , Proteínas do Tecido Nervoso/imunologia , Proteínas de Membrana/imunologia , Adulto , Idoso de 80 Anos ou mais , Síndrome de Creutzfeldt-Jakob/diagnóstico por imagem , Síndrome de Creutzfeldt-Jakob/imunologia , Síndrome de Creutzfeldt-Jakob/patologia , Diagnóstico Diferencial , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Doença de Hashimoto/diagnóstico por imagem , Doença de Hashimoto/imunologia , Adulto Jovem
8.
Artigo em Inglês | MEDLINE | ID: mdl-38514176

RESUMO

BACKGROUND: Primary progressive aphasia (PPA) defines a group of neurodegenerative disorders characterised by language decline. Three PPA variants correlate with distinct underlying pathologies: semantic variant PPA (svPPA) with transactive response DNA-binding protein of 43 kD (TDP-43) proteinopathy, agrammatic variant PPA (agPPA) with tau deposition and logopenic variant PPA (lvPPA) with Alzheimer's disease (AD). Our objectives were to differentiate PPA variants using clinical and neuroimaging features, assess progression and evaluate structural MRI and a novel 18-F fluorodeoxyglucose positron emission tomography (FDG-PET) image decomposition machine learning algorithm for neuropathology prediction. METHODS: We analysed 82 autopsied patients diagnosed with PPA from 1998 to 2022. Clinical histories, language characteristics, neuropsychological results and brain imaging were reviewed. A machine learning framework using a k-nearest neighbours classifier assessed FDG-PET scans from 45 patients compared with a large reference database. RESULTS: PPA variant distribution: 35 lvPPA (80% AD), 28 agPPA (89% tauopathy) and 18 svPPA (72% frontotemporal lobar degeneration-TAR DNA-binding protein (FTLD-TDP)). Apraxia of speech was associated with 4R-tauopathy in agPPA, while pure agrammatic PPA without apraxia was linked to 3R-tauopathy. Longitudinal data revealed language dysfunction remained the predominant deficit for patients with lvPPA, agPPA evolved to corticobasal or progressive supranuclear palsy syndrome (64%) and svPPA progressed to behavioural variant frontotemporal dementia (44%). agPPA-4R-tauopathy exhibited limited pre-supplementary motor area atrophy, lvPPA-AD displayed temporal atrophy extending to the superior temporal sulcus and svPPA-FTLD-TDP had severe temporal pole atrophy. The FDG-PET-based machine learning algorithm accurately predicted clinical diagnoses and underlying pathologies. CONCLUSIONS: Distinguishing 3R-taupathy and 4R-tauopathy in agPPA may rely on apraxia of speech presence. Additional linguistic and clinical features can aid neuropathology prediction. Our data-driven brain metabolism decomposition approach effectively predicts underlying neuropathology.

11.
Alzheimers Dement ; 20(4): 2680-2697, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38380882

RESUMO

INTRODUCTION: Amyloidosis, including cerebral amyloid angiopathy, and markers of small vessel disease (SVD) vary across dominantly inherited Alzheimer's disease (DIAD) presenilin-1 (PSEN1) mutation carriers. We investigated how mutation position relative to codon 200 (pre-/postcodon 200) influences these pathologic features and dementia at different stages. METHODS: Individuals from families with known PSEN1 mutations (n = 393) underwent neuroimaging and clinical assessments. We cross-sectionally evaluated regional Pittsburgh compound B-positron emission tomography uptake, magnetic resonance imaging markers of SVD (diffusion tensor imaging-based white matter injury, white matter hyperintensity volumes, and microhemorrhages), and cognition. RESULTS: Postcodon 200 carriers had lower amyloid burden in all regions but worse markers of SVD and worse Clinical Dementia Rating® scores compared to precodon 200 carriers as a function of estimated years to symptom onset. Markers of SVD partially mediated the mutation position effects on clinical measures. DISCUSSION: We demonstrated the genotypic variability behind spatiotemporal amyloidosis, SVD, and clinical presentation in DIAD, which may inform patient prognosis and clinical trials. HIGHLIGHTS: Mutation position influences Aß burden, SVD, and dementia. PSEN1 pre-200 group had stronger associations between Aß burden and disease stage. PSEN1 post-200 group had stronger associations between SVD markers and disease stage. PSEN1 post-200 group had worse dementia score than pre-200 in late disease stage. Diffusion tensor imaging-based SVD markers mediated mutation position effects on dementia in the late stage.


Assuntos
Doença de Alzheimer , Amiloidose , Doenças de Pequenos Vasos Cerebrais , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/genética , Doenças de Pequenos Vasos Cerebrais/complicações , Imagem de Tensor de Difusão , Imageamento por Ressonância Magnética , Mutação/genética , Presenilina-1/genética
12.
Cell ; 187(4): 831-845.e19, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38301645

RESUMO

The paraneoplastic Ma antigen (PNMA) proteins are associated with cancer-induced paraneoplastic syndromes that present with an autoimmune response and neurological symptoms. Why PNMA proteins are associated with this severe autoimmune disease is unclear. PNMA genes are predominantly expressed in the central nervous system and are ectopically expressed in some tumors. We show that PNMA2, which has been co-opted from a Ty3 retrotransposon, encodes a protein that is released from cells as non-enveloped virus-like capsids. Recombinant PNMA2 capsids injected into mice induce autoantibodies that preferentially bind external "spike" PNMA2 capsid epitopes, whereas a capsid-assembly-defective PNMA2 protein is not immunogenic. PNMA2 autoantibodies in cerebrospinal fluid of patients with anti-Ma2 paraneoplastic disease show similar preferential binding to spike capsid epitopes. PNMA2 capsid-injected mice develop learning and memory deficits. These observations suggest that PNMA2 capsids act as an extracellular antigen, capable of generating an autoimmune response that results in neurological deficits.


Assuntos
Antígenos de Neoplasias , Neoplasias , Proteínas do Tecido Nervoso , Síndromes Paraneoplásicas do Sistema Nervoso , Animais , Humanos , Camundongos , Autoanticorpos , Capsídeo/metabolismo , Epitopos , Neoplasias/complicações , Síndromes Paraneoplásicas do Sistema Nervoso/metabolismo , Síndromes Paraneoplásicas do Sistema Nervoso/patologia , Antígenos de Neoplasias/metabolismo , Proteínas do Tecido Nervoso/metabolismo
13.
J Am Chem Soc ; 146(2): 1491-1500, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38170908

RESUMO

3D metal-organic frameworks (MOFs) have gained attention as heterogeneous photocatalysts due to their porosity and unique host-guest interactions. Despite their potential, MOFs face challenges, such as inefficient mass transport and limited light penetration in photoinduced energy transfer processes. Recent advancements in organic photocatalysis have uncovered a variety of photoactive cores, while their heterogenization remains an underexplored area with great potential to build MOFs. This gap is bridged by incorporating photoactive cores into 2D MOF nanosheets, a process that merges the realms of small-molecule photochemistry and MOF chemistry. This approach results in recyclable heterogeneous photocatalysts that exhibit an improved mass transfer efficiency. This research demonstrates a bottom-up synthetic method for embedding photoactive cores into 2D MOF nanosheets, successfully producing variants such as PCN-641-NS, PCN-643-NS, and PCN-644-NS. The synthetic conditions were systematically studied to optimize the crystallinity and morphology of these 2D MOF nanosheets. Enhanced host-guest interactions in these 2D structures were confirmed through various techniques, particularly solid-state NMR studies. Additionally, the efficiency of photoinduced energy transfer in these nanosheets was evidenced through photoborylation reactions and the generation of reactive oxygen species (ROS).

14.
Ann Neurol ; 95(3): 518-529, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38069571

RESUMO

OBJECTIVE: This study was undertaken to evaluate the frequency of modifiable dementia risk factors and their association with cognitive impairment and rate of decline in diverse participants engaged in studies of memory and aging. METHODS: Modifiable dementia risk factors and their associations with cognitive impairment and cognitive decline were determined in community-dwelling African American (AA; n = 261) and non-Hispanic White (nHW; n = 193) participants who completed ≥2 visits at the Mayo Clinic Alzheimer Disease Research Center in Jacksonville, Florida. Risk factors and their associations with cognitive impairment (global Clinical Dementia Rating [CDR] ≥ 0.5) and rates of decline (CDR Sum of Boxes) in impaired participants were compared in AA and nHW participants, controlling for demographics, APOE ɛ4 status, and Area Deprivation Index. RESULTS: Hypertension, hypercholesterolemia, obesity, and diabetes were overrepresented in AA participants, but were not associated with cognitive impairment. Depression was associated with increased odds of cognitive impairment in AA (odds ratio [OR] = 4.30, 95% confidence interval [CI] = 2.13-8.67) and nHW participants (OR = 2.79, 95% CI = 1.21-6.44) but uniquely associated with faster decline in AA participants (ß = 1.71, 95% CI = 0.69-2.73, p = 0.001). Fewer AA participants reported antidepressant use (9/49, 18%) than nHW counterparts (57/78, 73%, p < 0.001). Vitamin B12 deficiency was also associated with an increased rate of cognitive decline in AA participants (ß = 2.65, 95% CI = 0.38-4.91, p = 0.023). INTERPRETATION: Modifiable dementia risk factors are common in AA and nHW participants, representing important risk mitigation targets. Depression was associated with dementia in AA and nHW participants, and with accelerated declines in cognitive function in AA participants. Optimizing depression screening and treatment may improve cognitive trajectories and outcomes in AA participants. ANN NEUROL 2024;95:518-529.


Assuntos
Doença de Alzheimer , Transtornos Cognitivos , Disfunção Cognitiva , Humanos , Doença de Alzheimer/complicações , Negro ou Afro-Americano , Transtornos Cognitivos/etiologia , Disfunção Cognitiva/epidemiologia , Disfunção Cognitiva/complicações , Fatores de Risco , Brancos
15.
Ann Neurol ; 95(2): 237-248, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37782554

RESUMO

OBJECTIVE: To improve the timely recognition of patients with treatment-responsive causes of rapidly progressive dementia (RPD). METHODS: A total of 226 adult patients with suspected RPD were enrolled in a prospective observational study and followed for up to 2 years. Diseases associated with RPD were characterized as potentially treatment-responsive or non-responsive, referencing clinical literature. Disease progression was measured using Clinical Dementia Rating® Sum-of-Box scores. Clinical and paraclinical features associated with treatment responsiveness were assessed using multivariable logistic regression. Findings informed the development of a clinical criterion optimized to recognize patients with potentially treatment-responsive causes of RPD early in the diagnostic evaluation. RESULTS: A total of 155 patients met defined RPD criteria, of whom 86 patients (55.5%) had potentially treatment-responsive causes. The median (range) age-at-symptom onset in patients with RPD was 68.9 years (range 22.0-90.7 years), with a similar number of men and women. Seizures, tumor (disease-associated), magnetic resonance imaging suggestive of autoimmune encephalitis, mania, movement abnormalities, and pleocytosis (≥10 cells/mm3 ) in cerebrospinal fluid at presentation were independently associated with treatment-responsive causes of RPD after controlling for age and sex. Those features at presentation, as well as age-at-symptom onset <50 years (ie, STAM3 P), captured 82 of 86 (95.3%) cases of treatment-responsive RPD. The presence of ≥3 STAM3 P features had a positive predictive value of 100%. INTERPRETATION: Selected features at presentation reliably identified patients with potentially treatment-responsive causes of RPD. Adaptation of the STAM3 P screening score in clinical practice may minimize diagnostic delays and missed opportunities for treatment in patients with suspected RPD. ANN NEUROL 2024;95:237-248.


Assuntos
Demência , Encefalite , Adulto , Masculino , Humanos , Feminino , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Demência/diagnóstico , Demência/tratamento farmacológico , Demência/etiologia , Encefalite/complicações , Imageamento por Ressonância Magnética , Testes de Estado Mental e Demência , Progressão da Doença
16.
Alzheimers Dement ; 20(1): 47-62, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37740921

RESUMO

INTRODUCTION: Studies suggest distinct differences in the development, presentation, progression, and response to treatment of Alzheimer's disease (AD) between females and males. We investigated sex differences in cognition, neuroimaging, and fluid biomarkers in dominantly inherited AD (DIAD). METHODS: Three hundred twenty-five mutation carriers (55% female) and one hundred eighty-six non-carriers (58% female) of the Dominantly Inherited Alzheimer Network Observational Study were analyzed. Linear mixed models and Spearman's correlation explored cross-sectional sex differences in cognition, cerebrospinal fluid (CSF) biomarkers, Pittsburgh compound B positron emission tomography (11 C-PiB PET) and structural magnetic resonance imaging (MRI). RESULTS: Female carriers performed better than males on delayed recall and processing speed despite similar hippocampal volumes. As the disease progressed, symptomatic females revealed higher increases in MRI markers of neurodegeneration and memory impairment. PiB PET and established CSF AD markers revealed no sex differences. DISCUSSION: Our findings suggest an initial cognitive reserve in female carriers followed by a pronounced increase in neurodegeneration coupled with worse performance on delayed recall at later stages of DIAD.


Assuntos
Doença de Alzheimer , Humanos , Feminino , Masculino , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Estudos Transversais , Caracteres Sexuais , Tomografia por Emissão de Pósitrons , Mutação/genética , Biomarcadores
17.
Ann Neurol ; 95(2): 299-313, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37897306

RESUMO

OBJECTIVE: This study was undertaken to apply established and emerging cerebrospinal fluid (CSF) biomarkers to improve diagnostic accuracy in patients with rapidly progressive dementia (RPD). Overlap in clinical presentation and results of diagnostic tests confounds etiologic diagnosis in patients with RPD. Objective measures are needed to improve diagnostic accuracy and to recognize patients with potentially treatment-responsive causes of RPD. METHODS: Biomarkers of Alzheimer disease neuropathology (amyloid-ß 42/40 ratio, phosphorylated tau [p-tau181, p-tau231]), neuroaxonal/neuronal injury (neurofilament light chain [NfL], visinin-like protein-1 [VILIP-1], total tau), neuroinflammation (chitinase-3-like protein [YKL-40], soluble triggering receptor expressed on myeloid cells 2 [sTREM2], glial fibrillary acidic protein [GFAP], monocyte chemoattractant protein-1 [MCP-1]), and synaptic dysfunction (synaptosomal-associated protein 25kDa, neurogranin) were measured in CSF obtained at presentation from 78 prospectively accrued patients with RPD due to neurodegenerative, vascular, and autoimmune/inflammatory diseases; 35 age- and sex-matched patients with typically progressive neurodegenerative disease; and 72 cognitively normal controls. Biomarker levels were compared across etiologic diagnoses, by potential treatment responsiveness, and between patients with typical and rapidly progressive presentations of neurodegenerative disease. RESULTS: Alzheimer disease biomarkers were associated with neurodegenerative causes of RPD. High NfL, sTREM2, and YKL-40 and low VILIP-1 identified patients with autoimmune/inflammatory diseases. MCP-1 levels were highest in patients with vascular causes of RPD. A multivariate model including GFAP, MCP-1, p-tau181, and sTREM2 identified the 44 patients with treatment-responsive causes of RPD with 89% accuracy. Minimal differences were observed between typical and rapidly progressive presentations of neurodegenerative disease. INTERPRETATION: Selected CSF biomarkers at presentation were associated with etiologic diagnoses and treatment responsiveness in patients with heterogeneous causes of RPD. The ability of cross-sectional biomarkers to inform upon mechanisms that drive rapidly progressive neurodegenerative disease is less clear. ANN NEUROL 2024;95:299-313.


Assuntos
Doença de Alzheimer , Demência , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/líquido cefalorraquidiano , Proteína 1 Semelhante à Quitinase-3 , Proteínas tau/líquido cefalorraquidiano , Estudos Transversais , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano
18.
Mol Neurodegener ; 18(1): 98, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38111006

RESUMO

BACKGROUND: "Brain-predicted age" estimates biological age from complex, nonlinear features in neuroimaging scans. The brain age gap (BAG) between predicted and chronological age is elevated in sporadic Alzheimer disease (AD), but is underexplored in autosomal dominant AD (ADAD), in which AD progression is highly predictable with minimal confounding age-related co-pathology. METHODS: We modeled BAG in 257 deeply-phenotyped ADAD mutation-carriers and 179 non-carriers from the Dominantly Inherited Alzheimer Network using minimally-processed structural MRI scans. We then tested whether BAG differed as a function of mutation and cognitive status, or estimated years until symptom onset, and whether it was associated with established markers of amyloid (PiB PET, CSF amyloid-ß-42/40), phosphorylated tau (CSF and plasma pTau-181), neurodegeneration (CSF and plasma neurofilament-light-chain [NfL]), and cognition (global neuropsychological composite and CDR-sum of boxes). We compared BAG to other MRI measures, and examined heterogeneity in BAG as a function of ADAD mutation variants, APOE Îµ4 carrier status, sex, and education. RESULTS: Advanced brain aging was observed in mutation-carriers approximately 7 years before expected symptom onset, in line with other established structural indicators of atrophy. BAG was moderately associated with amyloid PET and strongly associated with pTau-181, NfL, and cognition in mutation-carriers. Mutation variants, sex, and years of education contributed to variability in BAG. CONCLUSIONS: We extend prior work using BAG from sporadic AD to ADAD, noting consistent results. BAG associates well with markers of pTau, neurodegeneration, and cognition, but to a lesser extent, amyloid, in ADAD. BAG may capture similar signal to established MRI measures. However, BAG offers unique benefits in simplicity of data processing and interpretation. Thus, results in this unique ADAD cohort with few age-related confounds suggest that brain aging attributable to AD neuropathology can be accurately quantified from minimally-processed MRI.


Assuntos
Doença de Alzheimer , Humanos , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Amiloide , Envelhecimento , Biomarcadores , Tomografia por Emissão de Pósitrons , Proteínas tau/genética , Proteínas tau/metabolismo
19.
Brain Commun ; 5(6): fcad280, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37942088

RESUMO

Approximately 5% of Alzheimer's disease cases have an early age at onset (<65 years), with 5-10% of these cases attributed to dominantly inherited mutations and the remainder considered as sporadic. The extent to which dominantly inherited and sporadic early-onset Alzheimer's disease overlap is unknown. In this study, we explored the clinical, cognitive and biomarker profiles of early-onset Alzheimer's disease, focusing on commonalities and distinctions between dominantly inherited and sporadic cases. Our analysis included 117 participants with dominantly inherited Alzheimer's disease enrolled in the Dominantly Inherited Alzheimer Network and 118 individuals with sporadic early-onset Alzheimer's disease enrolled at the University of California San Francisco Alzheimer's Disease Research Center. Baseline differences in clinical and biomarker profiles between both groups were compared using t-tests. Differences in the rates of decline were compared using linear mixed-effects models. Individuals with dominantly inherited Alzheimer's disease exhibited an earlier age-at-symptom onset compared with the sporadic group [43.4 (SD ± 8.5) years versus 54.8 (SD ± 5.0) years, respectively, P < 0.001]. Sporadic cases showed a higher frequency of atypical clinical presentations relative to dominantly inherited (56.8% versus 8.5%, respectively) and a higher frequency of APOE-ε4 (50.0% versus 28.2%, P = 0.001). Compared with sporadic early onset, motor manifestations were higher in the dominantly inherited cohort [32.5% versus 16.9% at baseline (P = 0.006) and 46.1% versus 25.4% at last visit (P = 0.001)]. At baseline, the sporadic early-onset group performed worse on category fluency (P < 0.001), Trail Making Test Part B (P < 0.001) and digit span (P < 0.001). Longitudinally, both groups demonstrated similar rates of cognitive and functional decline in the early stages. After 10 years from symptom onset, dominantly inherited participants experienced a greater decline as measured by Clinical Dementia Rating Sum of Boxes [3.63 versus 1.82 points (P = 0.035)]. CSF amyloid beta-42 levels were comparable [244 (SD ± 39.3) pg/ml dominantly inherited versus 296 (SD ± 24.8) pg/ml sporadic early onset, P = 0.06]. CSF phosphorylated tau at threonine 181 levels were higher in the dominantly inherited Alzheimer's disease cohort (87.3 versus 59.7 pg/ml, P = 0.005), but no significant differences were found for t-tau levels (P = 0.35). In summary, sporadic and inherited Alzheimer's disease differed in baseline profiles; sporadic early onset is best distinguished from dominantly inherited by later age at onset, high frequency of atypical clinical presentations and worse executive performance at baseline. Despite these differences, shared pathways in longitudinal clinical decline and CSF biomarkers suggest potential common therapeutic targets for both populations, offering valuable insights for future research and clinical trial design.

20.
bioRxiv ; 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37961586

RESUMO

Hub regions in the brain, recognized for their roles in ensuring efficient information transfer, are vulnerable to pathological alterations in neurodegenerative conditions, including Alzheimer Disease (AD). Given their essential role in neural communication, disruptions to these hubs have profound implications for overall brain network integrity and functionality. Hub disruption, or targeted impairment of functional connectivity at the hubs, is recognized in AD patients. Computational models paired with evidence from animal experiments hint at a mechanistic explanation, suggesting that these hubs may be preferentially targeted in neurodegeneration, due to their high neuronal activity levels-a phenomenon termed "activity-dependent degeneration". Yet, two critical issues were unresolved. First, past research hasn't definitively shown whether hub regions face a higher likelihood of impairment (targeted attack) compared to other regions or if impairment likelihood is uniformly distributed (random attack). Second, human studies offering support for activity-dependent explanations remain scarce. We applied a refined hub disruption index to determine the presence of targeted attacks in AD. Furthermore, we explored potential evidence for activity-dependent degeneration by evaluating if hub vulnerability is better explained by global connectivity or connectivity variations across functional systems, as well as comparing its timing relative to amyloid beta deposition in the brain. Our unique cohort of participants with autosomal dominant Alzheimer Disease (ADAD) allowed us to probe into the preclinical stages of AD to determine the hub disruption timeline in relation to expected symptom emergence. Our findings reveal a hub disruption pattern in ADAD aligned with targeted attacks, detectable even in pre-clinical stages. Notably, the disruption's severity amplified alongside symptomatic progression. Moreover, since excessive local neuronal activity has been shown to increase amyloid deposition and high connectivity regions show high level of neuronal activity, our observation that hub disruption was primarily tied to regional differences in global connectivity and sequentially followed changes observed in Aß PET cortical markers is consistent with the activity-dependent degeneration model. Intriguingly, these disruptions were discernible 8 years before the expected age of symptom onset. Taken together, our findings not only align with the targeted attack on hubs model but also suggest that activity-dependent degeneration might be the cause of hub vulnerability. This deepened understanding could be instrumental in refining diagnostic techniques and developing targeted therapeutic strategies for AD in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA