Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biophys J ; 123(3): 374-388, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38196191

RESUMO

AAA+ proteins (ATPases associated with various cellular activities) comprise a family of powerful ring-shaped ATP-dependent translocases that carry out numerous vital substrate-remodeling functions. ClpB is a AAA+ protein disaggregation machine that forms a two-tiered hexameric ring, with flexible pore loops protruding into its center and binding to substrate proteins. It remains unknown whether these pore loops contribute only passively to substrate-protein threading or have a more active role. Recently, we have applied single-molecule FRET spectroscopy to directly measure the dynamics of substrate-binding pore loops in ClpB. We have reported that the three pore loops of ClpB (PL1-3) undergo large-scale fluctuations on the microsecond timescale that are likely to be mechanistically important for disaggregation. Here, using single-molecule FRET, we study the allosteric coupling between the pore loops and the two nucleotide-binding domains of ClpB (NBD1-2). By mutating the conserved Walker B motifs within the NBDs to abolish ATP hydrolysis, we demonstrate how the nucleotide state of each NBD tunes pore-loop dynamics. This effect is surprisingly long-ranged; in particular, PL2 and PL3 respond differentially to a Walker B mutation in either NBD1 or NBD2, as well as to mutations in both. We characterize the conformational dynamics of pore loops and the allosteric paths connecting NBDs to pore loops by molecular dynamics simulations and find that both principal motions and allosteric paths can be altered by changing the ATPase state of ClpB. Remarkably, PL3, which is highly conserved in AAA+ machines, is found to favor an upward conformation when only NBD1 undergoes ATP hydrolysis but a downward conformation when NBD2 is active. These results explicitly demonstrate a significant long-range allosteric effect of ATP hydrolysis sites on pore-loop dynamics. Pore loops are therefore established as active participants that undergo ATP-dependent conformational changes to translocate substrate proteins through the central pores of AAA+ machines.


Assuntos
Trifosfato de Adenosina , Transferência Ressonante de Energia de Fluorescência , Humanos , Trifosfato de Adenosina/metabolismo , Modelos Moleculares , Proteínas de Choque Térmico/metabolismo , Domínios Proteicos , Adenosina Trifosfatases/metabolismo
2.
J Chem Phys ; 158(12): 125101, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37003718

RESUMO

Proteolysis is essential for the control of metabolic pathways and the cell cycle. Bacterial caseinolytic proteases (Clp) use peptidase components, such as ClpP, to degrade defective substrate proteins and to regulate cellular levels of stress-response proteins. To ensure selective degradation, access to the proteolytic chamber of the double-ring ClpP tetradecamer is controlled by a critical gating mechanism of the two axial pores. The binding of conserved loops of the Clp ATPase component of the protease or small molecules, such as acyldepsipeptide (ADEP), at peripheral ClpP ring sites, triggers axial pore opening through dramatic conformational transitions of flexible N-terminal loops between disordered conformations in the "closed" pore state and ordered hairpins in the "open" pore state. In this study, we probe the allosteric communication underlying these conformational changes by comparing residue-residue couplings in molecular dynamics simulations of each configuration. Both principal component and normal mode analyses highlight large-scale conformational changes in the N-terminal loop regions and smaller amplitude motions of the peptidase core. Community network analysis reveals a switch between intra- and inter-protomer coupling in the open-closed pore transition. Allosteric pathways that connect the ADEP binding sites to N-terminal loops are rewired in this transition, with shorter network paths in the open pore configuration supporting stronger intra- and inter-ring coupling. Structural perturbations, either through the removal of ADEP molecules or point mutations, alter the allosteric network to weaken the coupling.


Assuntos
Simulação de Dinâmica Molecular , Peptídeo Hidrolases , Proteólise , Peptídeo Hidrolases/metabolismo , Adenosina Trifosfatases/metabolismo , Sítios de Ligação
3.
ACS Sens ; 8(5): 2000-2010, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37079901

RESUMO

The current pandemic has shown that we need sensitive and deployable diagnostic technologies. Surface-enhanced Raman scattering (SERS) sensors can be an ideal solution for developing such advanced point-of-need (PON) diagnostic tests. Homogeneous (reagentless) SERS sensors work by directly responding to the target without any processing step, making them capable for simple one-pot assays, but their limitation is the achievable sensitivity, insufficient compared to what is needed for sensing of viral biomarkers. Noncovalent DNA catalysis mechanisms have been recently exploited for catalytic amplification in SERS assays. These advances used catalytic hairpin assembly (CHA) and other DNA self-assembly processes to develop sensing mechanisms with improved sensitivities. However, these mechanisms have not been used in OFF-to-ON homogeneous sensors, and they often target the same biomarker, likely due to the complexity of the mechanism design. There is still a strong need for a catalytic SERS sensor with a homogeneous mechanism and a rationalization of the catalytic sensing mechanism to translate this sensing strategy to different targets and applications. We developed and investigated a homogeneous SERS sensing mechanism that uses catalytic amplification based on DNA self-assembly. We systematically investigated the role of three domains in the fuel strand (internal loop, stem, and toehold), which drives the catalytic mechanism. The thermodynamic parameters determined in our studies were used to build an algorithm for automated design of catalytic sensors that we validated on target sequences associated with malaria and SARS-CoV-2 strains. With our mechanism, we were able to achieve an amplification level of 20-fold for conventional DNA and of 36-fold using locked nucleic acids (LNAs), with corresponding improvements observed in the sensor limit of detection (LOD). We also show a single-base sequence specificity for a sensor targeting a sequence associated with the omicron variant, tested against a delta variant target. This work on catalytic amplification of homogeneous SERS sensors has the potential to enable the use of this sensing modality in new applications, such as infectious disease surveillance, by improving the LOD while conserving the sensor's homogeneous character.


Assuntos
Técnicas Biossensoriais , COVID-19 , Humanos , Racionalização , COVID-19/diagnóstico , SARS-CoV-2 , DNA , Catálise , Automação
4.
Biophys J ; 120(16): 3437-3454, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34181904

RESUMO

Disaggregation and microtubule-severing nanomachines from the AAA+ (ATPases associated with various cellular activities) superfamily assemble into ring-shaped hexamers that enable protein remodeling by coupling large-scale conformational changes with application of mechanical forces within a central pore by loops protruding within the pore. We probed the asymmetric pore motions and intraring interactions that support them by performing extensive molecular dynamics simulations of single-ring severing proteins and the double-ring disaggregase ClpB. Simulations reveal that dynamic stability of hexameric pores of severing proteins and of the nucleotide-binding domain 1 (NBD1) ring of ClpB, which belong to the same clade, involves a network of salt bridges that connect conserved motifs of central pore loops. Clustering analysis of ClpB highlights correlated motions of domains of neighboring protomers supporting strong interprotomer collaboration. Severing proteins have weaker interprotomer coupling and stronger intraprotomer stabilization through salt bridges involving pore loops. Distinct mechanisms are identified in the NBD2 ring of ClpB involving weaker interprotomer coupling through salt bridges formed by noncanonical loops and stronger intraprotomer coupling. Analysis of collective motions of PL1 loops indicates that the largest amplitude motions in the spiral complex of spastin and ClpB involve axial excursions of the loops, whereas for katanin they involve opening and closing of the central pore. All three motors execute primarily axial excursions in the ring complex. These results suggest distinct substrate processing mechanisms of remodeling and translocation by ClpB and spastin compared to katanin, thus providing dynamic support for the differential action of the two severing proteins. Relaxation dynamics of the distance between the PL1 loops and the center of mass of protomers reveals observation-time-dependent dynamics, leading to predicted relaxation times of tens to hundreds of microseconds on millisecond experimental timescales. For ClpB, the predicted relaxation time is in excellent agreement with the extracted time from smFRET experiments.


Assuntos
Adenosina Trifosfatases , Microtúbulos , Adenosina Trifosfatases/metabolismo , Katanina , Microtúbulos/metabolismo , Modelos Moleculares , Espastina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA