RESUMO
INTRODUCTION: Hysteroscopy is a critical procedure in gynecology for diagnosing and managing intrauterine pathology. Traditional hands-on training faces ethical and safety challenges, leading to an increased reliance on simulation training. This review systematically assesses the effectiveness of hysteroscopic simulation training in enhancing the technical skills of obstetrics and gynecology residents and medical students. METHODS: A PRISMA-guided literature search was conducted, covering English-language articles from January 2000 to December 2023. Studies were selected based on pre-defined criteria, focusing on the impact of simulation training on the targeted educational group. Metrics for evaluating skill improvement included machine-recorded metrics, Objective Structured Assessment of Technical Skills (OSATS), and global rating scales. RESULTS: The review included nine studies with varied designs, demonstrating significant improvements in hysteroscopic skills following simulation training. Virtual reality (VR) simulators showed substantial benefits in skill acquisition, while physical simulators provided valuable tactile feedback. However, long-term skill retention and the impact on non-technical skills were not adequately assessed. CONCLUSIONS: Simulation-based training effectively enhances hysteroscopic skills in medical students and residents. Further research is needed to explore long-term skill retention and the development of non-technical competencies. Robust studies, including randomized trials, are required for definitive validation.
RESUMO
BACKGROUND/OBJECTIVES: Metabolic dysfunction-associated fatty liver disease (MAFLD) is currently the most common cause of chronic liver disease. Systemic inflammatory status and peripheral metabolic symptoms in the clinical picture have an impact on gut commensal bacteria. METHODS: Our designed clinical trial was based on a cohort of patients with MAFLD whose diet included the daily consumption of 400 g of "Navelina" oranges for 28 days, compared with a control group of patients with the same pathologic conditions whose diet did not include the consumption of oranges and other foods containing similar nutrients/micronutrients. We used 16S metataxonomics and GC/MS analyses to identify taxa and urine/fecal VOCs, respectively. RESULTS: A set of micronutrients from the diet were inspected, and some specific fatty acids were identified as the main contributors in terms of cluster sample separation. Metataxonomics and metabolomics profiles were obtained, and a stringent statistical approach allowed for the identification of significant taxa/VOCs, which emerged from pairwise group comparisons in both fecal and urine samples. CONCLUSIONS: In conclusion, a set of taxa/VOCs can be directly referred to as a marker of dysbiosis status and other comorbidities that, together, make up the pathologic burden associated with MAFLD. The investigated variables can be a target of therapeutic strategies.
Assuntos
Citrus sinensis , Fezes , Microbioma Gastrointestinal , Metabolômica , Humanos , Metabolômica/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Fezes/química , Fezes/microbiologia , Dieta/métodos , Disbiose , Idoso , Adulto , Cromatografia Gasosa-Espectrometria de Massas , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/urina , Metaboloma , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado Gorduroso/etiologiaRESUMO
COVID-19 remains a significant threat, particularly to vulnerable populations. The emergence of new variants necessitates the development of treatments and vaccines that induce both humoral and cellular immunity. This study aimed to identify potentially immunogenic SARS-CoV-2 peptides and to explore the intricate host-pathogen interactions involving peripheral immune responses, memory profiles, and various demographic, clinical, and lifestyle factors. Using in silico and experimental methods, we identified several CD8-restricted SARS-CoV-2 peptides that are either poorly studied or have previously unreported immunogenicity: fifteen from the Spike and three each from non-structural proteins Nsp1-2-3-16. A Spike peptide, LA-9, demonstrated a 57% response rate in ELISpot assays using PBMCs from 14 HLA-A*02:01 positive, vaccinated, and mild-COVID-19 recovered subjects, indicating its potential for diagnostics, research, and multi-epitope vaccine platforms. We also found that younger individuals, with fewer vaccine doses and longer intervals since infection, showed lower anti-Spike (ELISA) and anti-Wuhan neutralizing antibodies (pseudovirus assay), higher naïve T cells, and lower central memory, effector memory, and CD4hiCD8low T cells (flow cytometry) compared to older subjects. In our cohort, a higher prevalence of Vδ2-γδ and DN T cells, and fewer naïve CD8 T cells, seemed to correlate with strong cellular and lower anti-NP antibody responses and to associate with Omicron infection, absence of confusional state, and habitual sporting activity.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Interações Hospedeiro-Patógeno , SARS-CoV-2 , Humanos , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , SARS-CoV-2/imunologia , Masculino , Feminino , Adulto , Vacinas contra COVID-19/imunologia , Pessoa de Meia-Idade , Interações Hospedeiro-Patógeno/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinação , Peptídeos/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Anticorpos Neutralizantes/imunologia , Idoso , Epitopos de Linfócito T/imunologiaRESUMO
The majority of materials used for membrane-based separation of gas mixtures are non-renewable and non-biodegradable, and the assessment of alternative bio-based polymers requires expensive and time-consuming experimental campaigns. This effort can be reduced by adopting suitable modelling approaches. In this series of works, we propose various modelling approaches to assess the CO2/CH4 separation performance of eight different copolymers of 3-hydroxybutyrate and 3-hydroxyvalerate (PHBV) using a limited amount of experimental data for model calibration. In part 1, we adopted a fully atomistic approach based on Molecular Dynamics (MD), while, in this work, we propose a multiscale methodology where a molecular description of the polymers is bridged to a macroscopic prediction of its gas sorption behaviour. PHBV structures were simulated using MD to obtain pressure-volume-temperature data, which were used to parametrise the Sanchez-Lacombe Equation of State. This, in turn, allows for the evaluation of the CO2 and CH4 solubility in the copolymers at various pressures and compositions with little computational effort, enabling the estimate of the sorption-based selectivity. The gas separation performance obtained with this multiscale technique was compared to results obtained with a fully atomistic model and experimental data. The solubility-selectivity for the CO2/CH4 mixture is in reasonable agreement between the two models and the experimental data. The multiscale method presented is a time-efficient alternative to fully atomistic methods and detailed experimental campaigns and can accelerate the introduction of renewable materials in different applications.
RESUMO
INTRODUCTION: The diagnostic workflow for endometrial carcinoma in postmenopausal asymptomatic women remains an ongoing dilemma. Whereas an ultrasonographic endometrial thickness greater than 4.0 or 5.0 mm is adequate for warranting further investigations in women with postmenopausal vaginal bleeding, there is still no unanimous consensus on what the ideal endometrial thickness cut-off should be, justifying additional inspection through endometrial sampling when bleeding is absent. METHODS: A comprehensive overview of the most recent literature to summarize the clinical pathway necessary for the diagnostic assessment of a postmenopausal asymptomatic woman with increased ultrasonographic endometrial thickness. RESULTS: An endometrial thickness cut-off between 3.0 and 5.9 mm seems to show the lowest specificity while also reducing the chances of missing malignancy. If endometrial thickness can be a valid starting point, a careful evaluation of the other ultrasonographic endometrial features and a thorough scrutiny of patients' risk factors are pivotal to standardizing the diagnostic process while avoiding overtreatment. Although preventing unnecessary procedures is crucial, stratifying the risk and proceeding with further investigations (preferably through outpatient or office hysteroscopically-guided targeted biopsies) should be the goal. CONCLUSIONS: Closer collaboration between different fields of medicine (ultrasonography, hysteroscopy, and oncology) is strongly encouraged to facilitate early diagnosis of asymptomatic postmenopausal women at risk of developing endometrial malignancy.
RESUMO
Continuous venovenous hemofiltration (CVVH) is frequently performed in critically ill patients using diluted citrate for regional anticoagulation. The impact of this renal replacement strategy on plasma sodium has not been evaluated yet. Our aim was therefore to assess the period prevalence of hyponatremia (sodium <135 mmol/L) during CVVH and discuss possible underlying mechanisms. After 48 hours of treatment, 70% of the 27 oligo-anuric critically ill patients were hyponatremic, despite the use of dialysis fluid bags (Regiocit 18/0, Phoxilium by Baxter, Deerfield, IL, and Multibic K2 by Fresenius Medical Care AG & Co. KGaA, Bad Homburg, Germany) with sodium content of 140 mmol/L. Indeed, sodium decreased from 142 ± 7 to 135 ± 3 mmol/L, p < 0.001. Sodium concentrations of employed dialysis bags were confirmed using ion chromatography. However, ionized sodium of Regiocit measured with a direct-ion selective electrode (ISE) resulted lower (~118 mmol/L), suggesting the presence of sodium-to-citrate complexes. Possible mechanisms explaining the hyponatremia development could therefore include: i) plasma water dilution; ii) a reduced Gibbs-Donnan effect, given the low albumin concentration (2.6 ± 0.8 g/dl) of our critically ill patients; iii) a negative sodium balance due to the loss of sodium-to-citrate complexes across the filter. The clinical implications of the described hyponatremia and the different contributions of the hypothesized mechanisms need to be addressed in future studies.
RESUMO
Autism spectrum disorder (ASD) affects social interaction and communication. Emerging evidence links ASD to gut microbiome alterations, suggesting that microbial composition may play a role in the disorder. This study employs explainable artificial intelligence (XAI) to examine the contributions of individual microbial species to ASD. By using local explanation embeddings and unsupervised clustering, the research identifies distinct ASD subgroups, underscoring the disorder's heterogeneity. Specific microbial biomarkers associated with ASD are revealed, and the best classifiers achieved an AU-ROC of 0.965 ± 0.005 and an AU-PRC of 0.967 ± 0.008. The findings support the notion that gut microbiome composition varies significantly among individuals with ASD. This work's broader significance lies in its potential to inform personalized interventions, enhancing precision in ASD management and classification. These insights highlight the importance of individualized microbiome profiles for developing tailored therapeutic strategies for ASD.
RESUMO
Most of the biogenic amines are naturally found in fermented foods as a consequence of amino acid decarboxylation. Their formation is ascribable to microorganisms (starters, contaminants and autochthonous) present in the food matrix. The concentration of these molecules is important for food security reasons, as they are involved in food poisoning illnesses. The most frequent amines found in foods are histamine, putrescine, cadaverine, tyramine, tryptamine, phenylethylamine, spermine and spermidine. One of the most risk-prone foods are cheeses, mostly ripened ones, which could easily accumulate amines due to their peculiar manufacturing process and ripening. Cheeses represent a pivotal food in our diet, providing for nutrients such as amino acids, calcium, vitamins and others; thus, since they are widely consumed, it is important to evaluate the presence of toxic molecules to avoid consumers' poisoning. This review aimed to gather general information on the role of biogenic amines, their formation, the health issues and the microorganisms and processes that produce/reduce them, with a focus on their content in different types of cheese (from soft to hard cheeses) and the biotic and abiotic factors that influence their formation or reduction and concentration. Finally, a multivariate analysis was performed on the biogenic amine content, derived from data available in the literature, to obtain more information about the factors influencing their presence in cheeses.
RESUMO
A very low calorie ketogenic diet (VLCKD) impacts host metabolism in people marked by an excess of visceral adiposity, and it affects the microbiota composition in terms of taxa presence and relative abundances. As a matter of fact, there is little available literature dealing with microbiota differences in obese patients marked by altered intestinal permeability. With the aim of inspecting consortium members and their related metabolic pathways, we inspected the microbial community profile, together with the set of volatile organic compounds (VOCs) from untargeted fecal and urine metabolomics, in a cohort made of obese patients, stratified based on both normal and altered intestinal permeability, before and after VLCKD administration. Based on the taxa relative abundances, we predicted microbiota-derived metabolic pathways whose variations were explained in light of our cohort symptom picture. A totally different number of statistically significant pathways marked samples with altered permeability, reflecting an important shift in microbiota taxa. A combined analysis of taxa, metabolic pathways, and metabolomic compounds delineates a set of markers that is useful in describing obesity dysfunctions and comorbidities.
Assuntos
Dieta Cetogênica , Microbioma Gastrointestinal , Metabolômica , Obesidade , Permeabilidade , Humanos , Dieta Cetogênica/métodos , Obesidade/dietoterapia , Obesidade/metabolismo , Microbioma Gastrointestinal/fisiologia , Feminino , Masculino , Adulto , Metabolômica/métodos , Pessoa de Meia-Idade , Redes e Vias Metabólicas , Fezes/microbiologia , Fezes/química , Mucosa Intestinal/metabolismo , Compostos Orgânicos Voláteis/análise , Restrição Calórica/métodos , Função da Barreira Intestinal , MultiômicaRESUMO
Metal-organic frameworks (MOFs) are normally moisture-sensitive and unstable in aqueous environments, which has considerably limited their practical applications because water/moisture is ubiquitous in many industrial processes. New materials with superior water stability are, therefore, in great demand and vital to their practical applications. Here, a novel oil/water interfacial assembly strategy is demonstrated for the synthesis of a new class of metal-organic monoacid framework (MOmAF) with exceptional water stability and chemical stability. Superhydrophobic 2D sheets are synthesized at room temperature, while 1D nanotubes are obtained via the self-scrolling of their 2D sheets for the first time. In addition, a simple sequential drop-casting method is developed to coat as-synthesized MOmAF structures onto porous membranes. This can potentially open up new avenues in the design of superhydrophobic self-cleaning MOmAF materials without tedious post-synthetic modifications and usher in a new class of materials meeting industrial needs.
RESUMO
Celiac disease - a prevalent food intolerance - requires strict adherence to a lifelong gluten-free (GF) diet as the only effective treatment. However, GF products often lack soluble fibre and have a high glycaemic index. Consequently, there is a pressing need in the food industry to develop GF products with improved nutritional profiles. In this context, the impact of incorporating orange peel flour (OPF) into muffins undergoing sourdough fermentation was examined, focusing on their technological, antioxidant, and nutritional characteristics. The functional properties of OPF were investigated using human colon carcinoma HCT8 cells as a model system. Treatment with OPF extract demonstrated a notable reduction in malignant cell viability and intracellular ROS levels, indicating potent antioxidant capabilities. Western blot analysis revealed significant alterations in key signalling pathways, including increased phosphorylation of NF-kB at serine 536 and reduced intracellular levels of caspase-3, alongside increased phosphorylation of RIPK3 and MLKL, suggesting potential involvement in necroptosis. OPF incorporation in muffins with sourdough increased antioxidant activity, reduced glycaemic index, and affected the volatile profile. Furthermore, based on simulated colonic fermentation, muffins with OPF showed a slight prebiotic effect, supported by the significant increase in bacillus-shaped lactic acid bacteria and Clostridia population. Overall, OPF-enriched muffins demonstrated considerable antioxidant effects and impacts on cell viability, underscoring their potential as functional ingredients in GF products. These findings signify the prospect of OPF enhancing the nutritional profiles and conferring health benefits of GF muffins.
Assuntos
Antioxidantes , Citrus sinensis , Dieta Livre de Glúten , Fermentação , Farinha , Humanos , Citrus sinensis/química , Antioxidantes/farmacologia , Farinha/análise , Doença Celíaca/dietoterapia , Pão/análise , Suplementos Nutricionais , Linhagem Celular Tumoral , Valor Nutritivo , Frutas/química , Sobrevivência Celular/efeitos dos fármacosRESUMO
Megacolon is a rare clinical condition consisting of an abnormally dilated colon in the absence of mechanical obstruction. Megacolon can complicate pregnancy in terms of maternal morbidity and mortality (volvulus, ileus, systemic toxicity, bowel perforation, sepsis) and obstetrical outcomes (preterm birth, premature rupture of membranes, dystocia). Pregnancy, on the other hand, can exacerbate chronic constipation through hormonal and mechanical mechanisms. A case of megacolon, first detected during pregnancy in an otherwise healthy nulliparous woman, is reported. The diagnosis was suspected on observation of a pelvic mass of unknown aetiology (mean diameter > 10 cm) constricting and dislocating the gravid uterus contralaterally during a routine mid-trimester fetal ultrasound. The diagnostic work-up and management are discussed. Chronic constipation in women of reproductive age should receive greater clinical attention during pre- and periconception care. A multi-disciplinary approach, timely diagnosis and delivery planning are fundamental to ensure favourable outcomes for both the mother and fetus when dealing with megacolon during pregnancy.
Assuntos
Megacolo , Complicações na Gravidez , Humanos , Feminino , Gravidez , Megacolo/diagnóstico , Megacolo/complicações , Megacolo/diagnóstico por imagem , Complicações na Gravidez/diagnóstico , Adulto , Ultrassonografia Pré-Natal , Constipação Intestinal/etiologiaRESUMO
There is increasing evidence indicating that changes in both the composition and functionality of the intestinal microbiome are closely associated with the development of several chronic inflammatory diseases, with celiac disease (CeD) being particularly noteworthy. Thanks to the advent of culture-independent methodologies, the ability to identify and quantify the diverse microbial communities residing within the human body has been significantly improved. However, in the context of CeD, a notable challenge lies in characterizing the specific microbiota present on the mucosal surfaces of the intestine, rather than relying solely on fecal samples, which may not fully represent the relevant microbial populations. Currently, our comprehension of the composition and functional importance of mucosa-associated microbiota (MAM) in CeD remains an ongoing field of research because the limited number of available studies have reported few and sometimes contradictory results. MAM plays a crucial role in the development and progression of CeD, potentially acting as both a trigger and modulator of the immune response within the intestinal mucosa, given its proximity to the epithelial cells and direct interaction. According to this background, this review aims to consolidate the existing literature specifically focused on MAM in CeD. By elucidating the complex interplay between the host immune system and the gut microbiota, we aim to pave the way for new interventions based on novel therapeutic targets and diagnostic biomarkers for MAM in CeD.
Assuntos
Doença Celíaca , Duodeno , Microbioma Gastrointestinal , Mucosa Intestinal , Doença Celíaca/microbiologia , Humanos , Microbioma Gastrointestinal/fisiologia , Mucosa Intestinal/microbiologia , Duodeno/microbiologiaRESUMO
Gluten possesses unique properties that render it only partially digestible. Consequently, it exerts detrimental effects on a part of the worldwide population who are afflicted with celiac disease (1%) or related disorders (5%), particularly due to the potential for cross-contamination even when adhering to a gluten-free diet (GFD). Finding solutions to break down gluten during digestion has a high nutritional and social impact. Here, a randomized double-blind placebo-controlled in vivo challenge investigated the gluten-degrading activity of a novel probiotic preparation comprising lactobacilli and their cytoplasmic extracts, Bacillus sp., and bacterial protease. In our clinical trial, we collected feces from 70 healthy volunteers at specific time intervals. Probiotic/placebo administration lasted 32 days, followed by 10 days of wash-out. After preliminary GFD to eliminate residual gluten from feces, increasing amounts of gluten (50 mg-10 g) were administered, each one for 4 consecutive days. Compared to placebo, the feces of volunteers fed with probiotics showed much lower amounts of residual gluten, mainly with increased intakes. Probiotics also regulate the intestinal microbial communities, improving the abundance of genera pivotal to maintaining homeostasis. Quantitative PCR confirmed that all probiotics persisted during the intervention, some also during wash-out. Probiotics promoted a fecal metabolome with potential immunomodulating activity, mainly related to derivatives of branched-chain amino acids and short-chain fatty acids. IMPORTANCE: The untapped potential of gluten-degrading bacteria and their application in addressing the recognized limitations of gluten-related disorder management and the ongoing risk of cross-contamination even when people follow a gluten-free diet (GFD) emphasizes the significance of the work. Because gluten, a common protein found in many cereals, must be strictly avoided to stop autoimmune reactions and related health problems, celiac disease and gluten sensitivity present difficult hurdles. However, because of the hidden presence of gluten in many food products and the constant danger of cross-contamination during food preparation and processing, total avoidance is frequently challenging. Our study presents a novel probiotic preparation suitable for people suffering from gluten-related disorders during GFD and for healthy individuals because it enhances gluten digestion and promotes gut microbiota functionality.
Assuntos
Fezes , Microbioma Gastrointestinal , Glutens , Probióticos , Humanos , Probióticos/administração & dosagem , Glutens/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Fezes/microbiologia , Fezes/química , Método Duplo-Cego , Adulto , Masculino , Feminino , Lactobacillus/metabolismo , Doença Celíaca/microbiologia , Doença Celíaca/metabolismo , Doença Celíaca/dietoterapia , Dieta Livre de Glúten , Bacillus/metabolismo , Pessoa de Meia-Idade , Adulto JovemRESUMO
This study aimed to microencapsulate the probiotic strain Lactiplantibacillus plantarum 4S6R (basonym Lactobacillus plantarum) in both microcapsules and microspheres by prilling/vibration technique. A specific polymeric mixture, selected for its responsiveness to parallel colonic stimuli, was individuated as a carrier of microparticles. Although the microspheres were consistent with some critical quality parameters, they showed a low encapsulation efficiency and were discarded. The microcapsules produced demonstrated high yields (97.52%) and encapsulation efficiencies (90.06%), with dimensional analysis and SEM studies confirming the desired size morphology and structure. The results of thermal stress tests indicate the ability of the microcapsules to protect the probiotic. Stability studies showed a significant advantage of the microcapsules over non-encapsulated probiotics, with greater stability over time. The release study under simulated gastrointestinal conditions demonstrated the ability of the microcapsules to protect the probiotics from gastric acid and bile salts, ensuring their viability. Examination in a simulated faecal medium revealed the ability of the microcapsules to release the bacteria into the colon, enhancing their beneficial impact on gut health. This research suggests that the selected mixture of reactive polymers holds promise for improving the survival and efficacy of probiotics in the gastrointestinal tract, paving the way for the development of advanced probiotic products.
Assuntos
Cápsulas , Colo , Lactobacillus plantarum , Microesferas , Probióticos , Probióticos/administração & dosagem , Colo/microbiologia , Colo/metabolismo , Ácidos e Sais Biliares/química , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Tamanho da Partícula , Sistemas de Liberação de Medicamentos/métodos , Ácido Gástrico/química , Ácido Gástrico/metabolismo , Estabilidade de Medicamentos , Fezes/microbiologiaRESUMO
Solid organ transplantation (SOT) is considered the optimal treatment for children with end-stage organ failure; however, increased efforts are needed to understand the gap surrounding equitable access to and health outcomes of SOT for Indigenous children. This scoping review summarizes the literature on the characteristics of access to and health outcomes of pediatric SOT among Indigenous children in the settler-colonial states of Canada, Aotearoa New Zealand, Australia, and the United States. A search was performed on MEDLINE, EMBASE, PsycINFO, and CINAHL for studies matching preestablished eligibility criteria from inception to November 2021. A preliminary gray literature search was also conducted. Twenty-four studies published between 1996 and 2021 were included. Studies addressed Indigenous pediatric populations within the United States (nâ =â 7), Canada (nâ =â 6), Aotearoa New Zealand (nâ =â 5), Australia (nâ =â 5), and Aotearoa New Zealand and Australia combined (nâ =â 1). Findings showed that Indigenous children experienced longer time on dialysis, lower rates of preemptive and living donor kidney transplantation, and disparities in patient and graft outcomes after kidney transplantation. There were mixed findings about access to liver transplantation for Indigenous children and comparable findings for graft and patient outcomes after liver transplantation. Social determinants of health, such as geographic remoteness, lack of living donors, and traditional spiritual beliefs, may affect SOT access and outcomes for Indigenous children. Evidence gaps emphasize the need for action-based initiatives within SOT that prioritize research with and for Indigenous pediatric populations. Future research should include community-engaged methodologies, situated within local community contexts, to inform culturally safe care for Indigenous children.
RESUMO
Listeria monocytogenes is a ubiquitous pathogen found both in the environment and food. It can cause listeriosis in a wide range of animals as well as in humans. Investigations on presence, spread and virulence are still limited to terrestrial and human environments. Embracing the One Health Approach, investigating the presence and spread of L. monocytogenes in marine ecosystems and among wildlife, would provide us with useful information for human health. This study investigated the presence of L. monocytogenes and Listeria spp. in two species of sea turtles common in the Mediterranean Sea (Caretta caretta and Chelonia mydas). A total of one hundred and sixty-four carcasses of sea turtles (C. caretta n = 161 and C. mydas n = 3) stranded along the Abruzzo, Molise, Campania, and Calabria coasts, were collected. Brain and fecal samples were taken, enriched, and cultured for the detection of Listeria spp. From the specimens collected, strains of L. monocytogenes (brain n = 1, brain and feces n = 1, multiorgan n = 1 and feces n = 1), L. innocua (feces n = 1 and brain n = 1), and L. ivanovii (brain n = 1) were isolated. Typical colonies were isolated for Whole Genome Sequencing (WGS). Virulence genes, disinfectants/metal resistance, and antimicrobial resistance were also investigated. L. monocytogenes, L. innocua, and L. ivanovii were detected in C. caretta, whilst only L. monocytogenes and L. innocua in C. mydas. Notable among the results is the lack of significant differences in gene distribution between human and sea turtle strains. Furthermore, potentially pathogenic strains of L. monocytogenes were found in sea turtles.
RESUMO
The microbiota of a cheese play a critical role in influencing its sensory and physicochemical properties. In this study, traditional Apulian Caciocavallo cheeses coming from 4 different dairies in the same area and produced following standardized procedures were examined, as well as the different bulk milks and natural whey starter (NWS) cultures used. Moreover, considering the cheese wheels as the blocks of Caciocavallo cheeses as whole, these were characterized at different layers (i.e., core, under-rind, and rind) of the block using a multi-omics approach. In addition to physical-chemical characterization, culturomics, quantitative PCR, metagenomics, and metabolomics analysis were carried out after salting and throughout the ripening time (2 mo) to investigate major shifts in the succession of the microbiota and flavor development. Culture-dependent and 16S rRNA metataxonomics results clearly clustered samples based on microbiota biodiversity related to the production dairy plant as a result of the use of different NWS or the intrinsic conditions of each production site. At the beginning of the ripening, cheeses were dominated by Lactobacillus, and in 2 dairies (Art and SdC), Streptococcus genera were associated with the NWS. The analysis allowed us to show that although the diversity of identified genera did not change significantly between the rind, under-rind, and core fractions of the same samples, there was an evolution in the relative abundance and absolute quantification, modifying and differentiating profiles during ripening. The real-time PCR, also known as quantitative or qPCR, mainly differentiated the temporal adaptation of those species originating from bulk milks and those provided by NWS. The primary starters detected in NWS and cheeses contributed to the high relative concentration of 1-butanol, 2-butanol, 2-heptanol, 2-butanone, acetoin, delta-dodecalactone, hexanoic acid ethyl ester, octanoic acid ethyl ester, and volatile free fatty acids during ripening, whereas cheeses displaying low abundances of Streptococcus and Lactococcus (dairy Del) had a lower total concentration of acetoin compared with Art and SdC. However, the subdominant strains and nonstarter lactic acid bacteria present in cheeses are responsible for the production of secondary metabolites belonging to the chemical classes of ketones, alcohols, and organic acids, reaffirming the importance and relevance of autochthonous strains of each dairy plant although only considering a delimited production area.
Assuntos
Queijo , Queijo/microbiologia , Animais , Leite/microbiologia , Leite/química , Microbiologia de AlimentosRESUMO
Dietary supplements enriched with bioactive compounds represent a promising approach to influence physiological processes and enhance longevity and overall health. Cynara cardunculus var. scolymus serves as a functional food supplement with a high concentration of bioactive compounds, which offers various health-promoting benefits. Several chronic diseases have metabolic, genetic, or inflammatory origins, which are frequently interconnected. Pharmacological treatments, although effective, often result in undesirable side effects. In this context, preventive approaches are gaining increased attention. Recent literature indicates that the consumption of bioactive compounds in the diet can positively influence the organism's biological functions. Polyphenols, well-known for their health benefits, are widely recognized as valuable compounds in preventing/combating various pathologies related to lifestyle, metabolism, and aging. The C. scolymus belonging to the Asteraceae family, is widely used in the food and herbal medicine fields for its beneficial properties. Although the inflorescences (capitula) of the artichoke are used for food and culinary purposes, preparations based on artichoke leaves can be used as an active ingredient in herbal medicines. Cynara scolymus shows potential benefits in different domains. Its nutritional value and health benefits make it a promising candidate for improving overall well-being. C. scolymus exhibits anti-inflammatory, antioxidant, liver-protective, bile-expelling, antimicrobial, and lipid-lowering neuroprotective properties. Different studies demonstrate that oxidative stress is the leading cause of the onset and progression of major human health disorders such as cardiovascular, neurological, metabolic, and cancer diseases. The large amount of polyphenol found in C. scolymus has an antioxidant activity, enabling it to neutralize free radicals, preventing cellular damage. This reduces the subsequent risk of developing conditions such as cancer, diabetes, and cardiovascular diseases. Additionally, these polyphenols demonstrate anti-inflammatory activity, which is closely associated with their antioxidant properties. As a result, C. scolymus has the potential to contribute to the treatment of chronic diseases, including intestinal disorders, cardiovascular diseases, and neurodegenerative pathologies. The current review discussed the nutritional profiles, potential benefits, and pharmacological effects of C. scolymus.
Assuntos
Doenças Cardiovasculares , Cynara scolymus , Neoplasias , Humanos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Polifenóis/farmacologia , Polifenóis/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/metabolismo , Doença Crônica , Anti-Inflamatórios/farmacologiaRESUMO
(Poly)phenolic-rich Mediterranean plants such as Thymbra spicata have been associated with several health-promoting effects. The nutritional value, as well as physiological interaction of T. spicata with the gastrointestinal tract, has not been investigated before. The nutritional composition of T. spicata leaves was here characterized by standard analytical methods. T. spicata leaves were subjected to ethanolic extraction, simulated gastrointestinal digestion, and anaerobic microbial gut fermentation. Phenols/flavonoid contents and radical scavenging activity were assessed by colorimetric methods. The volatile organic compounds (VOCs) were detected by gas chromatography coupled with mass spectrometry. The effect on intestinal integrity was evaluated using a Caco-2 monolayers mounted in a Ussing chamber. T. spicata contains a high amount of fiber (12.3%) and unsaturated fatty acids (76% of total fat). A positive change in VOCs including short-chain fatty acids was observed without significant change in viable microbe. T. spicata and carvacrol (main phenolic compound) enhanced ionic currents in a concentration-dependent manner without compromising the Caco-2 monolayer's integrity. These effects were partially lost upon simulated digestion and completely abolished after colonic fermentation in line with polyphenols and carvacrol content. Conclusion: T. spicata represents a promising nutrient for the modulation of gut microbiota and the gut barrier. Further studies must better define its mechanisms of action.