Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biosystems ; 239: 105214, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38642881

RESUMO

The place of living organisms in the natural world is a nearly perennial question in philosophy and the sciences; how can inanimate matter yield animate beings? A dominant answer for several centuries has been to treat organisms as sophisticated machines, studying them with the mechanistic physics and chemistry that have given rise to technology and complex machines. Since the early 20th century, many scholars have sought instead to naturalize biology through thermodynamics, recognizing the precarious far-from-equilibrium state of organisms. Erwin Bauer was an early progenitor of this perspective with ambitions of "general laws for the movement of living matter". In addition to taking a thermodynamic perspective, Bauer recognized that organisms are fundamentally behaving systems, and that explaining the physics of life requires explaining the origins of intentionality, adaptability, and self-regulation. Bauer, like some later scholars, seems to advocate for a "new physics", one that extends beyond mechanics and classical thermodynamic, one that would be inclusive of living systems. In this historical review piece, we explore some of Bauer's ideas and explain how similar concepts have been explored in modern non-equilibrium thermodynamics and dissipative structure theory. Non-living dissipative structures display end-directedness, self-maintenance, and adaptability analogous to organisms. These findings also point to an alternative framework for the life sciences, that treats organisms not as machines but as sophisticated dissipative structures. We evaluate the differences between mechanistic and thermodynamic perspectives on life, and what each theory entails for understanding the behavior of organisms.


Assuntos
Termodinâmica , Animais , Humanos , Modelos Biológicos
2.
Philos Trans A Math Phys Eng Sci ; 381(2252): 20220278, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37334453

RESUMO

The physical origin of behaviour in biological organisms is distinct from those of non-living systems in one significant way: organisms exhibit intentionality or goal-directed behaviour. How may we understand and explain this important aspect in physical terms, grounded in laws of physics and chemistry? In this article, we discuss recent experimental and theoretical progress in this area and future prospects of this line of thought. The physical basis for our investigation is thermodynamics, though other branches of physics and chemistry have an important role. This article is part of the theme issue 'Thermodynamics 2.0: Bridging the natural and social sciences (Part 1)'.


Assuntos
Física , Ciências Sociais , Termodinâmica
3.
Entropy (Basel) ; 24(12)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36554198

RESUMO

All organisms depend on a supply of energetic resources to power behavior and the irreversible entropy-producing processes that sustain them. Dissipative structure theory has often been a source of inspiration for better understanding the thermodynamics of biology, yet real organisms are inordinately more complex than most laboratory systems. Here we report on a simulated chemical dissipative structure that operates as a proto cell. The simulated swimmer moves through a 1D environment collecting resources that drive a nonlinear reaction network interior to the swimmer. The model minimally represents properties of a simple organism including rudimentary foraging and chemotaxis and an analog of a metabolism in the nonlinear reaction network. We evaluated how dynamical stability of the foraging dynamics (i.e., swimming and chemotaxis) relates to the rate of entropy production. Results suggested a relationship between dynamical steady states and entropy production that was tuned by the relative coordination of foraging and metabolic processes. Results include evidence in support of and contradicting one formulation of a maximum entropy production principle. We discuss the status of this principle and its relevance to biology.

4.
Entropy (Basel) ; 23(5)2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34063356

RESUMO

Coordination within and between organisms is one of the most complex abilities of living systems, requiring the concerted regulation of many physiological constituents, and this complexity can be particularly difficult to explain by appealing to physics. A valuable framework for understanding biological coordination is the coordinative structure, a self-organized assembly of physiological elements that collectively performs a specific function. Coordinative structures are characterized by three properties: (1) multiple coupled components, (2) soft-assembly, and (3) functional organization. Coordinative structures have been hypothesized to be specific instantiations of dissipative structures, non-equilibrium, self-organized, physical systems exhibiting complex pattern formation in structure and behaviors. We pursued this hypothesis by testing for these three properties of coordinative structures in an electrically-driven dissipative structure. Our system demonstrates dynamic reorganization in response to functional perturbation, a behavior of coordinative structures called reciprocal compensation. Reciprocal compensation is corroborated by a dynamical systems model of the underlying physics. This coordinated activity of the system appears to derive from the system's intrinsic end-directed behavior to maximize the rate of entropy production. The paper includes three primary components: (1) empirical data on emergent coordinated phenomena in a physical system, (2) computational simulations of this physical system, and (3) theoretical evaluation of the empirical and simulated results in the context of physics and the life sciences. This study reveals similarities between an electrically-driven dissipative structure that exhibits end-directed behavior and the goal-oriented behaviors of more complex living systems.

5.
Entropy (Basel) ; 22(11)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33287069

RESUMO

Self-organization in nonequilibrium systems has been known for over 50 years. Under nonequilibrium conditions, the state of a system can become unstable and a transition to an organized structure can occur. Such structures include oscillating chemical reactions and spatiotemporal patterns in chemical and other systems. Because entropy and free-energy dissipating irreversible processes generate and maintain these structures, these have been called dissipative structures. Our recent research revealed that some of these structures exhibit organism-like behavior, reinforcing the earlier expectation that the study of dissipative structures will provide insights into the nature of organisms and their origin. In this article, we summarize our study of organism-like behavior in electrically and chemically driven systems. The highly complex behavior of these systems shows the time evolution to states of higher entropy production. Using these systems as an example, we present some concepts that give us an understanding of biological organisms and their evolution.

6.
PLoS One ; 14(5): e0217305, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31141547

RESUMO

Physical systems open to a flow of energy can exhibit spontaneous symmetry breaking and self-organization. These nonequilibrium self-organized systems are known as dissipative structures. We study the oscillatory mode of an electrically driven dissipative structure. Our system consists of aluminum beads in shallow oil, which, when subjected to a high voltage, self-organize into connected 'tree' structures. The tree structures serve as pathways for the conduction of charge to ground. This system shows a variety of spatio-temporal behaviors, such as oscillating movement of the tree structures. Utilizing a dynamical systems model of the electromagnetic phenomena, we explore a potential mechanism underlying the system's behavior and use the model to make additional empirical predictions. The model reproduces the oscillatory behavior observed in the real system, and the behavior of the real system is consistent with predictions from the model under various constraints. From the empirical results and the mathematical model, we observe a tendency for the system to select modes of behavior with increased dissipation, or higher rates of entropy production, in accord with the proposed Maximum Entropy Production (MEP) Principle.


Assuntos
Fenômenos Eletromagnéticos , Entropia , Modelos Biológicos , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA