Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 38(10): e23639, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38742798

RESUMO

We tested the hypothesis that the biosensor capability of the endometrium is mediated in part, by the effect of different cargo contained in the extracellular vesicles secreted by the conceptus during the peri-implantation period of pregnancy. We transferred Bos taurus taurus embryos of different origin, in vivo (high developmental potential (IV)), in vitro (intermediate developmental potential (IVF)), or cloned (low developmental potential (NT)), into Bos taurus indicus recipients. Extracellular vesicles (EVs) recovered from Day 16 conceptus-conditioned medium were characterized and their microRNA (miRNA) cargo sequenced alongside RNA sequencing of their respective endometria. There were substantial differences in the endometrial response to in vivo versus in vitro and in vivo versus cloned conceptuses (1153 and 334DEGs respectively) with limited differences between in vitro Vs cloned conceptuses (36 DEGs). The miRNA cargo contained in conceptus-derived EVs was similar between all three groups (426 miRNA in common). Only 8 miRNAs were different between in vivo and cloned conceptuses, while only 6 miRNAs were different between in vivo and in vitro-derived conceptuses. Treatment of endometrial epithelial cells with mimic or inhibitors for miR-128 and miR-1298 changed the proteomic content of target cells (96 and 85, respectively) of which mRNAs are altered in the endometrium in vivo (PLXDC2, COPG1, HSPA12A, MCM5, TBL1XR1, and TTF). In conclusion, we have determined that the biosensor capability of the endometrium is mediated in part, by its response to different EVs miRNA cargo produced by the conceptus during the peri-implantation period of pregnancy.


Assuntos
Endométrio , Vesículas Extracelulares , MicroRNAs , Feminino , Endométrio/metabolismo , Endométrio/citologia , Animais , Vesículas Extracelulares/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Bovinos , Gravidez , Técnicas Biossensoriais/métodos , Implantação do Embrião/fisiologia , Embrião de Mamíferos/metabolismo
2.
Biol Reprod ; 108(2): 304-315, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36394270

RESUMO

Environmental stressors to which a fetus is exposed affect a range of physiological functions in postnatal offspring. We aimed to determine the in utero effect of steroid hormones on the reproductive potential of female offspring using a porcine model. Reproductive tracts of pigs from female-biased (>65% female, n = 15), non-biased (45-54.9% female, n = 15), and male-biased litters (<35% females, n = 9) were collected at slaughter (95-115 kg). Ovaries and uterine horns were processed for H&E or immunohistochemistry. Variability of data within groups was analyzed with a Levene's test, while data were analyzed using mixed linear models in R. In the ovarian reserve, there was a significant birth weight by sex ratio interaction (P = 0.015), with low birth weight pigs from male-biased litters having higher numbers of primordial follicles with opposite trends seen in pigs from female-biased litters. Sex bias held no effect on endometrial gland development. A lower birth weight decreased the proportion of glands found in the endometrium (P = 0.045) and was more variable in both male-biased and female-biased litters (P = 0.026). The variability of primordial follicles from male-biased litters was greater than non- and female-biased litters (P = 0.014). Similarly, endometrial stromal nuclei had a greater range in male- and female-biased litters than non-biased litters (P = 0.028). A crucial finding was the greater variability in primordial follicles in the ovaries from females derived from male-biased litters and stromal cell count in the endometrium of females from male- and female-biased litters. This could be inflating the variability of reproductive success seen in females from male-biased litters.


Assuntos
Reserva Ovariana , Animais , Suínos , Feminino , Masculino , Peso ao Nascer , Sexismo , Útero/fisiologia , Ovário
3.
Endocrinology ; 162(6)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33693651

RESUMO

The molecular interactions between the maternal environment and the developing embryo are key for early pregnancy success and are influenced by factors such as maternal metabolic status. Our understanding of the mechanism(s) through which these individual nutritional stressors alter endometrial function and the in utero environment for early pregnancy success is, however, limited. Here we report, for the first time, the use of an endometrium-on-a-chip microfluidics approach to produce a multicellular endometrium in vitro. Isolated endometrial cells (epithelial and stromal) from the uteri of nonpregnant cows in the early luteal phase (Days 4-7) were seeded in the upper chamber of the device (epithelial cells; 4-6 × 104 cells/mL) and stromal cells seeded in the lower chamber (1.5-2 × 104 cells/mL). Exposure of cells to different concentrations of glucose (0.5, 5.0, or 50 mM) or insulin (Vehicle, 1 or 10 ng/mL) was performed at a flow rate of 1 µL/minute for 72 hours. Quantitative differences in the cellular transcriptome and the secreted proteome of in vitro-derived uterine luminal fluid were determined by RNA-sequencing and tandem mass tagging mass spectrometry, respectively. High glucose concentrations altered 21 and 191 protein-coding genes in epithelial and stromal cells, respectively (P < .05), with a dose-dependent quantitative change in the protein secretome (1 and 23 proteins). Altering insulin concentrations resulted in limited transcriptional changes including transcripts for insulin-like binding proteins that were cell specific but altered the quantitative secretion of 196 proteins. These findings highlight 1 potential mechanism by which changes to maternal glucose and insulin alter uterine function.


Assuntos
Endométrio/efeitos dos fármacos , Glucose/farmacologia , Insulina/farmacologia , Dispositivos Lab-On-A-Chip , Animais , Bovinos , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Células Cultivadas , Embrião de Mamíferos , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Endométrio/citologia , Endométrio/metabolismo , Feminino , Perfilação da Expressão Gênica/instrumentação , Perfilação da Expressão Gênica/métodos , Gravidez , Cultura Primária de Células/instrumentação , Cultura Primária de Células/métodos , Proteoma/efeitos dos fármacos , Proteoma/metabolismo , Proteômica/instrumentação , Proteômica/métodos , Via Secretória/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
4.
Anim Reprod Sci ; 187: 174-180, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29113726

RESUMO

Embryonic and placental development is highly orchestrated by epigenetic processes. Disruptions in normal placental development, commonly observed in pregnancies produced by nuclear transfer, are associated with abnormal gene expression and altered epigenetic regulation of imprinted and vital placental genes. The objective of this study was to evaluate expression and epigenetic regulation of the imprinted gene TSSC4 in cotyledonary and intercotyledonary tissues from day 60 pregnancies produced by embryo transfer (ET), in vitro fertilization (IVF) and nuclear transfer (NT) in cattle. TSSC4 expression was reduced by 30% in cotyledons at 60days of gestation in the NT group. The proximal promoter region of TSSC4 showed an increase in the permissive histone mark (H3K4me2) and a reduction in the inhibitory histone mark (H3K9me2) in the cotyledons produced by NT, in relation to cotyledons produced by embryo transfer. Interestingly, H3K9me2 was also significantly reduced in cotyledons produced by IVF, compared to the ET controls. DNA methylation, in CpG-rich regions located at the proximal promoter region and the coding region of TSSC4 did not differ. These results suggest that the reduction in TSSC4 expression, observed following NT, can not be explained by the histone changes investigated in the proximal promoter region of the gene, or by changes in methylation in three regions evaluated. Also, a decrease in the levels of H3K9 dimethylation in IVF samples, indicate that in vitro culturing could corroborate with the alterations seen in the NT group.


Assuntos
Bovinos/genética , Transferência Embrionária/métodos , Fertilização in vitro/métodos , Técnicas de Transferência Nuclear , Placenta/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Epigênese Genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Impressão Genômica , Especificidade de Órgãos , Gravidez , Proteínas Supressoras de Tumor/genética
5.
Anim Reprod Sci ; 186: 85-92, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28969874

RESUMO

Anti-Mullerian hormone (AMH) is expressed by both male and female fetuses during mammalian development, with males expressing AMH earlier and at significantly higher concentration. The aim of the current study was to explore the potential impact of pregnancy and fetal sex on maternal AMH and to determine if plasma (Pl) AMH or placenta intercotyledonary membrane and cotyledonary AMH receptor 2 (AMHR2) mRNA expression differ in pregnant cows carrying male vs. female fetuses. AMH levels in blood were measured using a bovine optimized ELISA kit. Cows pregnant with a male fetus were observed to have a significantly greater difference in Pl AMH between day 35 and 135 of gestation. Average fetal AMH level between 54 and 220days of gestation was also observed to be significantly higher in male vs. female fetuses. Intercotyledonary membranes and cotyledons were found to express AMHR2 between days 38 and 80 of gestation at similar levels in both fetal sexes. These findings support the hypothesis that fetal sex alters maternal Pl AMH during pregnancy in cattle.


Assuntos
Hormônio Antimülleriano/metabolismo , Bovinos/sangue , Feto/fisiologia , Prenhez , Animais , Hormônio Antimülleriano/sangue , Bovinos/fisiologia , Feminino , Masculino , Troca Materno-Fetal/fisiologia , Placenta/metabolismo , Gravidez , Prenhez/sangue
6.
Reprod Fertil Dev ; 29(3): 458-467, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28442058

RESUMO

Abnormal placental development is frequent in nuclear transfer (NT) pregnancies and is likely to be associated with altered epigenetic reprogramming. In the present study, fetal and placental measurements were taken on Day 60 of gestation in cows with pregnancies produced by AI, IVF and NT. Placentas were collected and subjected to histological evaluation, the expression of genes important in trophoblast differentiation and expression of the placental imprinted gene pleckstrin homology-like domain, family A, member 2 (PHLDA2), as well as chromatin immunoprecipitation (ChIP) for histone marks within the promoter of PHLDA2. Fewer binucleated cells were observed in NT cotyledons, followed by IVF and AI cotyledons (P<0.05). Expression of heart and neural crest derivatives expressed 1 (HAND1), placental lactogen (PL), pregnancy-associated glycoprotein 9 (PAG-9) and PHLDA2 was elevated in NT cotyledons compared with AI cotyledons. Expression of PHLDA2 was higher in IVF than AI samples (P<0.05). ChIP revealed an increase in the permissive mark dimethylation of lysine 4 on histone H3 (H3K4me2), surprisingly associated with the silent allele of PHLDA2, and a decrease in the inhibitory mark H3K9me2 in NT samples. Thus, genes critical for placental development were altered in NT placentas, including an imprinted gene. Allele-specific changes in the permissive histone mark in the PHLDA2 promoter indicate misregulation of imprinting in clones. Abnormal trophoblast differentiation could have resulted in lower numbers of binucleated cells following NT. These results suggest that the altered expression of imprinted genes associated with NT are also caused by changes in histone modifications.


Assuntos
Expressão Gênica , Código das Histonas , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Técnicas de Transferência Nuclear/veterinária , Placenta/metabolismo , Alelos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Bovinos , Feminino , Histonas/genética , Proteínas Nucleares/genética , Lactogênio Placentário/genética , Lactogênio Placentário/metabolismo , Placentação/fisiologia , Gravidez , Proteínas da Gravidez/genética , Proteínas da Gravidez/metabolismo , Trofoblastos/metabolismo
7.
Zygote ; 24(4): 624-33, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26885679

RESUMO

Gene expression profiling of in vivo- and in vitro-matured bovine oocytes can identify transcripts related to the developmental potential of oocytes. Nonetheless, the effects of in vitro culturing oocytes are yet to be fully understood. We tested the effects of in vitro maturation on the transcript profile of oocytes collected from Bos taurus indicus cows. We quantified the expression of 1488 genes in in vivo- and in vitro-matured oocytes. Of these, 51 genes were up-regulated, whereas 56 were down-regulated (≥2-fold) in in vivo-matured oocytes in comparison with in vitro-matured oocytes. Quantitative real-time polymerase chain reaction (PCR) of nine genes confirmed the microarray results of differential expression between in vivo- and in vitro-matured oocytes (EZR, EPN1, PSEN2, FST, IGFBP3, RBBP4, STAT3, FDPS and IRS1). We interrogated the results for enrichment of Gene Ontology categories and overlap with protein-protein interactions. The results revealed that the genes altered by in vitro maturation are mostly related to the regulation of oocyte metabolism. Additionally, analysis of protein-protein interactions uncovered two regulatory networks affected by the in vitro culture system. We propose that the differentially expressed genes are candidates for biomarkers of oocyte competence. In vitro oocyte maturation can affect the abundance of specific transcripts and are likely to deplete the developmental competence.


Assuntos
Perfilação da Expressão Gênica/métodos , Técnicas de Maturação in Vitro de Oócitos/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Oócitos/metabolismo , Animais , Bovinos , Regulação para Baixo , Feminino , Ontologia Genética , Redes Reguladoras de Genes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima
8.
Cell Reprogram ; 13(5): 419-29, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21740268

RESUMO

Somatic cell nuclear transfer (SCNT) has had an enormous impact on our understanding of biology and remains a unique tool for multiplying valuable laboratory and domestic animals. However, the complexity of the procedure and its poor efficiency are factors that limit a wider application of SCNT. In this context, oocyte meiotic arrest is an important option to make SCNT more flexible and increase the number of cloned embryos produced. Herein, we show that the use of butyrolactone I in association with brain-derived neurotrophic factor (BDNF) to arrest the meiotic division for 24 h prior to in vitro maturation provides bovine (Bos indicus) oocytes capable of supporting development of blastocysts and full-term cloned calves at least as efficiently as nonarrested oocytes. Furthermore, the procedure resulted in cloned blastocysts with an 1.5- and twofold increase of POU5F1 and IFNT2 expression, respectively, which are well-known markers of embryonic viability. Mitochondrial DNA (mtDNA) copy number was diminished by prematuration in immature oocytes (718,585±34,775 vs. 595,579±31,922, respectively, control and treated groups) but was unchanged in mature oocytes (522,179±45,617 vs. 498,771±33,231) and blastocysts (816,627±40,235 vs. 765,332±51,104). To our knowledge, this is the first report of cloned offspring born to prematured oocytes, indicating that meiotic arrest could have significant implications for laboratories working with SCNT and in vitro embryo production.


Assuntos
4-Butirolactona/análogos & derivados , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Clonagem de Organismos/métodos , Meiose/efeitos dos fármacos , Técnicas de Transferência Nuclear , Oócitos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , 4-Butirolactona/farmacologia , Animais , Blastocisto/citologia , Blastocisto/metabolismo , Bovinos , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Interferon Tipo I/biossíntese , Fator 3 de Transcrição de Octâmero/biossíntese , Oócitos/citologia , Gravidez , Proteínas da Gravidez/biossíntese
9.
Reprod Fertil Dev ; 20(4): 529-36, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18462616

RESUMO

The effect of s-nitroso-n-acetyl-l,l-penicillamine (SNAP, a nitric oxide donor) during in vitro maturation (IVM) on nuclear maturation and embryo development was investigated. The effect of increasing nitric oxide (NO) during prematuration or maturation, or both, on embryo development was also assessed. 10(-3) m SNAP nearly blocked oocytes reaching metaphase II (MII) (7%, P < 0.05) while 10(-5) m SNAP showed intermediate proportions (55%). For 10(-7) m SNAP and controls (without SNAP), MII percentages were similar (72% for both, P > 0.05), but superior to the other treatment groups (P < 0.05). Blastocyst development, however, was not affected (38% for all treatments, P < 0.05). TUNEL-positive cells in hatched blastocysts (Day 9) increased when IVM included 10(-5) m SNAP (8 v. 3 to 4 cells in the other treatments, P > 0.05), without affecting total cell numbers (240 to 291 cells, P > 0.05). When oocytes were prematured followed by IVM with or without 10(-7) m SNAP, during either culture period or both, blastocyst development was similar (26 to 40%, P > 0.05). When SNAP was included during both prematuration and IVM, the proportion of Day 9 hatched embryos increased (28% v. 14 to 19% in the other treatments, P < 0.05). Apoptotic cells, however, increased when SNAP was included (6 to 10 cells) in comparison to prematuration and maturation without SNAP (3 cells, P < 0.05). NO may be involved in meiotic progression and apoptosis during embryo development.


Assuntos
Desenvolvimento Embrionário/efeitos dos fármacos , Meiose/efeitos dos fármacos , Óxido Nítrico/farmacologia , Oócitos/efeitos dos fármacos , Oogênese/efeitos dos fármacos , Animais , Bovinos , Núcleo Celular/efeitos dos fármacos , Células Cultivadas , Fragmentação do DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Embrião de Mamíferos , Feminino , Masculino , Doadores de Óxido Nítrico/farmacologia , Oócitos/fisiologia , S-Nitroso-N-Acetilpenicilamina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA