Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Toxins (Basel) ; 15(8)2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37624265

RESUMO

Molecular cloning and controlled expression remain challenging when the target gene encodes a protein that is toxic to the host. We developed a set of multi-layer control systems to enable cloning of genes encoding proteins known to be highly toxic in Escherichia coli and other bacteria. The different multi-layer control systems combine a promoter-operator system on a transcriptional level with a riboswitch for translational control. Additionally, replicational control is ensured by using a strain that reduces the plasmid copy number. The use of weaker promoters (such as PBAD or PfdeA) in combination with the effective theophylline riboswitch is essential for cloning genes that encode notoriously toxic proteins that directly target translation and transcription. Controlled overexpression is possible, allowing the system to be used for evaluating in vivo effects of the toxin. Systems with a stronger promoter can be used for successful overexpression and purification of the desired protein but are limited to toxins that are more moderate and do not interfere with their own production.


Assuntos
Riboswitch , Toxinas Biológicas , Escherichia coli/genética , Clonagem Molecular , Replicação do DNA , Regiões Promotoras Genéticas
2.
mBio ; 12(6): e0294721, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34844426

RESUMO

Type II toxin-antitoxin (TA) systems are classically composed of two genes that encode a toxic protein and a cognate antitoxin protein. Both genes are organized in an operon whose expression is autoregulated at the level of transcription by the antitoxin-toxin complex, which binds operator DNA through the antitoxin's DNA-binding domain. Here, we investigated the transcriptional regulation of a particular TA system located in the immunity region of a cryptic lambdoid prophage in the Escherichia coli O157:H7 EDL933 strain. This noncanonical paaA2-parE2 TA operon contains a third gene, paaR2, that encodes a transcriptional regulator that was previously shown to control expression of the TA. We provide direct evidence that the PaaR2 is a transcriptional regulator which shares functional similarities to the lambda CI repressor. Expression of the paaA2-parE2 TA operon is regulated by two other transcriptional regulators, YdaS and YdaT, encoded within the same region. We argue that YdaS and YdaT are analogous to lambda Cro and CII and that they do not constitute a TA system, as previously debated. We show that PaaR2 primarily represses the expression of YdaS and YdaT, which in turn controls the expression of paaR2-paaA2-parE2 operon. Overall, our results show that the paaA2-parE2 TA is embedded in an intricate lambdoid prophage-like regulation network. Using single-cell analysis, we observed that the entire locus exhibits bistability, which generates diversity of expression in the population. Moreover, we confirmed that paaA2-parE2 is addictive and propose that it could limit genomic rearrangements within the immunity region of the CP-933P cryptic prophage. IMPORTANCE Transcriptional regulation of bacterial toxin-antitoxin (TA) systems allows compensation of toxin and antitoxin proteins to maintain a neutral state and avoid cell intoxication unless TA genes are lost. Such models have been primarily studied in plasmids, but TAs are equally present in other mobile genetic elements, such as transposons and prophages. Here, we demonstrate that the expression of a TA system located in a lambdoid cryptic prophage is transcriptionally coupled to the prophage immunity region and relies on phage transcription factors. Moreover, competition between transcription factors results in bistable expression, which generates cell-to-cell heterogeneity in the population, but without, however, leading to any detectable phenotype, even in cells expressing the TA system. We show that despite the lack of protein sequence similarity, this locus retains major lambda prophage regulation features.


Assuntos
Colífagos/genética , Escherichia coli O157/virologia , Prófagos/genética , Sistemas Toxina-Antitoxina , Proteínas Virais/genética , Sequência de Bases , Colífagos/metabolismo , Regulação Viral da Expressão Gênica , Genoma Viral , Óperon , Plasmídeos/genética , Plasmídeos/metabolismo , Prófagos/metabolismo , Proteínas Virais/metabolismo
3.
Acta Crystallogr F Struct Biol Commun ; 77(Pt 10): 374-384, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34605442

RESUMO

paaR2-paaA2-parE2 is a three-component toxin-antitoxin module found in prophage CP-993P of Escherichia coli O157:H7. Transcription regulation of this module occurs via the 123-amino-acid regulator PaaR2, which forms a large oligomeric structure. Despite appearing to be well folded, PaaR2 withstands crystallization, as does its N-terminal DNA-binding domain. Native mass spectrometry was used to screen for nanobodies that form a unique complex and stabilize the octameric structure of PaaR2. One such nanobody, Nb33, allowed crystallization of the protein. The resulting crystals belong to space group F432, with unit-cell parameter a = 317 Å, diffract to 4.0 Šresolution and are likely to contain four PaaR2 monomers and four nanobody monomers in the asymmetric unit. Crystals of two truncates containing the N-terminal helix-turn-helix domain also interact with Nb33, and the corresponding co-crystals diffracted to 1.6 and 1.75 Šresolution.


Assuntos
Cristalografia por Raios X/métodos , Escherichia coli O157/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Anticorpos de Domínio Único/metabolismo , Sequência de Aminoácidos , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Modelos Moleculares , Conformação Proteica , Homologia de Sequência , Anticorpos de Domínio Único/química
4.
Protein Sci ; 30(6): 1103-1113, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33786944

RESUMO

Toxin-antitoxin (TA) modules are small operons in bacteria and archaea that encode a metabolic inhibitor (toxin) and a matching regulatory protein (antitoxin). While their biochemical activities are often well defined, their biological functions remain unclear. In Type II TA modules, the most common class, both toxin and antitoxin are proteins, and the antitoxin inhibits the biochemical activity of the toxin via complex formation with the toxin. The different TA modules vary significantly regarding structure and biochemical activity. Both regulation of protein activity by the antitoxin and regulation of transcription can be highly complex and sometimes show striking parallels between otherwise unrelated TA modules. Interplay between the multiple levels of regulation in the broader context of the cell as a whole is most likely required for optimum fine-tuning of these systems. Thus, TA modules can go through great lengths to prevent activation and to reverse accidental activation, in agreement with recent in vivo data. These complex mechanisms seem at odds with the lack of a clear biological function.


Assuntos
Archaea , Bactérias , Regulação da Expressão Gênica em Archaea/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Sistemas Toxina-Antitoxina/fisiologia , Archaea/genética , Archaea/metabolismo , Bactérias/genética , Bactérias/metabolismo
5.
Sci Adv ; 7(9)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33637534

RESUMO

Eukaryotic cells rely on endocytosis to regulate their plasma membrane proteome and lipidome. Most eukaryotic groups, except fungi and animals, have retained the evolutionary ancient TSET complex as an endocytic regulator. Unlike other coatomer complexes, structural insight into TSET is lacking. Here, we reveal the molecular architecture of plant TSET [TPLATE complex (TPC)] using an integrative structural approach. We identify crucial roles for specific TSET subunits in complex assembly and membrane interaction. Our data therefore generate fresh insight into the differences between the hexameric TSET in Dictyostelium and the octameric TPC in plants. Structural elucidation of this ancient adaptor complex represents the missing piece in the coatomer puzzle and vastly advances our functional as well as evolutionary insight into the process of endocytosis.

6.
Biomol NMR Assign ; 14(1): 25-30, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31625047

RESUMO

The cryptic prophage CP-933P in Escherichia coli O157:H7 contains a parDE-like toxin-antitoxin module, the operator region of which is recognized by two flanking transcription regulators: PaaR2 (ParE associated Regulator), which forms part of the paaR2-paaA2-parE2 toxin-antitoxin operon and YdaS (COG4197), which is encoded in the opposite direction but shares the operator. Here we report the 1H, 15N and 13C backbone and side chain chemical shift assignments of YdaS from Escherichia coli O157:H7 in its free state. YdaS is a distinct relative to HigA antitoxins but behaves as a monomer in solution. The BMRB Accession Number is 27917.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Proteínas de Ligação a DNA/química , Escherichia coli O157/metabolismo , Proteínas de Escherichia coli/química , Espectroscopia de Prótons por Ressonância Magnética , Isótopos de Nitrogênio/química , Estrutura Secundária de Proteína
7.
Biophys J ; 116(8): 1420-1431, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30979547

RESUMO

PaaR2 is a putative transcription regulator encoded by a three-component parDE-like toxin-antitoxin module from Escherichia coli O157:H7. Although this module's toxin, antitoxin, and toxin-antitoxin complex have been more thoroughly investigated, little remains known about its transcription regulator PaaR2. Using a wide range of biophysical techniques (circular dichroism spectroscopy, size-exclusion chromatography-multiangle laser light scattering, dynamic light scattering, small-angle x-ray scattering, and native mass spectrometry), we demonstrate that PaaR2 mainly consists of α-helices and displays a concentration-dependent octameric build-up in solution and that this octamer contains a global shape that is significantly nonspherical. Thermal unfolding of PaaR2 is reversible and displays several transitions, suggesting a complex unfolding mechanism. The unfolding data obtained from spectroscopic and calorimetric methods were combined into a unifying thermodynamic model, which suggests a five-state unfolding trajectory. Furthermore, the model allows the calculation of a stability phase diagram, which shows that, under physiological conditions, PaaR2 mainly exists as a dimer that can swiftly oligomerize into an octamer depending on local protein concentrations. These findings, based on a thorough biophysical and thermodynamic analysis of PaaR2, may provide important insights into biological function such as DNA binding and transcriptional regulation.


Assuntos
Escherichia coli O157/genética , Escherichia coli O157/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Multimerização Proteica , Estabilidade Proteica , Estrutura Quaternária de Proteína , Desdobramento de Proteína , Termodinâmica , Transcrição Gênica
8.
Sci Rep ; 5: 16532, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26559140

RESUMO

A major limitation for better understanding the role of the human gut virome in health and disease is the lack of validated methods that allow high throughput virome analysis. To overcome this, we evaluated the quantitative effect of homogenisation, centrifugation, filtration, chloroform treatment and random amplification on a mock-virome (containing nine highly diverse viruses) and a bacterial mock-community (containing four faecal bacterial species) using quantitative PCR and next-generation sequencing. This resulted in an optimised protocol that was able to recover all viruses present in the mock-virome and strongly alters the ratio of viral versus bacterial and 16S rRNA genetic material in favour of viruses (from 43.2% to 96.7% viral reads and from 47.6% to 0.19% bacterial reads). Furthermore, our study indicated that most of the currently used virome protocols, using small filter pores and/or stringent centrifugation conditions may have largely overlooked large viruses present in viromes. We propose NetoVIR (Novel enrichment technique of VIRomes), which allows for a fast, reproducible and high throughput sample preparation for viral metagenomics studies, introducing minimal bias. This procedure is optimised mainly for faecal samples, but with appropriate concentration steps can also be used for other sample types with lower initial viral loads.


Assuntos
Metagenoma , Metagenômica , Vírus/classificação , Vírus/genética , Centrifugação/métodos , Filtração/métodos , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica/métodos , Metagenômica/normas , Técnicas de Amplificação de Ácido Nucleico , Vírion/isolamento & purificação , Vírus/isolamento & purificação
9.
J Colloid Interface Sci ; 409: 183-92, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23988082

RESUMO

Droplet coalescence is determined by the combined effect of the collision frequency and the coalescence efficiency of colliding droplets. In the present work, the effect of geometrical confinement on coalescence efficiency in shear flow is experimentally investigated by means of a counter rotating parallel plate device, equipped with a microscope. The model system consisted of Newtonian droplets in a Newtonian matrix. The ratio of droplet diameter to plate spacing (2R/H) is varied between 0.06 and 0.42, thus covering bulk as well as confined conditions. Droplet interactions are investigated for the complete range of offsets between the droplet centers in the velocity gradient direction. It is observed that due to confinement, coalescence is possible up to higher initial offsets. On the other hand, confinement also induces a lower boundary for the initial offset, below which the droplets reverse during their interaction, thus rendering coalescence impossible. Numerical simulations in 2D show that the latter phenomenon is caused by recirculation flows at the front and rear of confined droplet pairs. The lower boundary is independent of Ca, but increases with increasing confinement ratio 2R/H and droplet size. The overall coalescence efficiency is significantly larger in confined conditions as compared to bulk conditions.


Assuntos
Dimetilpolisiloxanos/química , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA