Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
2.
Genes Dis ; 10(4): 1367-1401, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37397557

RESUMO

Cancer is an abnormal state of cells where they undergo uncontrolled proliferation and produce aggressive malignancies that causes millions of deaths every year. With the new understanding of the molecular mechanism(s) of disease progression, our knowledge about the disease is snowballing, leading to the evolution of many new therapeutic regimes and their successive trials. In the past few decades, various combinations of therapies have been proposed and are presently employed in the treatment of diverse cancers. Targeted drug therapy, immunotherapy, and personalized medicines are now largely being employed, which were not common a few years back. The field of cancer discoveries and therapeutics are evolving fast as cancer type-specific biomarkers are progressively being identified and several types of cancers are nowadays undergoing systematic therapies, extending patients' disease-free survival thereafter. Although growing evidence shows that a systematic and targeted approach could be the future of cancer medicine, chemotherapy remains a largely opted therapeutic option despite its known side effects on the patient's physical and psychological health. Chemotherapeutic agents/pharmaceuticals served a great purpose over the past few decades and have remained the frontline choice for advanced-stage malignancies where surgery and/or radiation therapy cannot be prescribed due to specific reasons. The present report succinctly reviews the existing and contemporary advancements in chemotherapy and assesses the status of the enrolled drugs/pharmaceuticals; it also comprehensively discusses the emerging role of specific/targeted therapeutic strategies that are presently being employed to achieve better clinical success/survival rate in cancer patients.

3.
Nutrients ; 14(5)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35267974

RESUMO

SARS-CoV-2 virus, infecting human cells via its spike protein, causes Coronavirus disease 2019 (COVID-19). COVID-19 is characterized by shortness of breath, fever, and pneumonia and is sometimes fatal. Unfortunately, to date, there is still no definite therapy to treat COVID-19. Therefore, the World Health Organization (WHO) approved only supportive care. During the COVID-19 pandemic, the need to maintain a correct intake of nutrients to support very weakened patients in overcoming disease arose. The literature available on nutrient intake for COVID-19 is mainly focused on prevention. However, the safe intake of micro- and/or macro-nutrients can be useful either for preventing infection and supporting the immune response during COVID-19, as well as in the post-acute phase, i.e., "long COVID", that is sometimes characterized by the onset of various long lasting and disabling symptoms. The aim of this review is to focus on the role of nutrient intake during all the different phases of the disease, including prevention, the acute phase, and finally long COVID.


Assuntos
COVID-19 , COVID-19/complicações , COVID-19/prevenção & controle , Humanos , Nutrientes , Pandemias/prevenção & controle , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda
4.
Cancers (Basel) ; 15(1)2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36612117

RESUMO

The expression level of the tumor suppressor p53 is controlled by the E3 ubiquitin ligase MDM2 with a regulatory feedback loop, which allows p53 to upregulate its inhibitor MDM2. In this manuscript we demonstrated that p90RSK binds and phosphorylates MDM2 on serine 166 both in vitro and in vivo by kinase assay, immunoblot, and co-immunoprecipitation assay; this phosphorylation increases the stability of MDM2 which in turn binds p53, ubiquitinating it and promoting its degradation by proteasome. A pharmacological inhibitor of p90RSK, BI-D1870, decreases MDM2 phosphorylation, and restores p53 function, which in turn transcriptionally increases the expression of cell cycle inhibitor p21 and of pro-apoptotic protein Bax and downregulates the anti-apoptotic protein Bcl-2, causing a block of cell proliferation, measured by a BrdU assay and growth curve, and promoting apoptosis, measured by a TUNEL assay. Finally, an immunohistochemistry evaluation of primary thyroid tumors, in which p90RSK is very active, confirms MDM2 stabilization mediated by p90RSK phosphorylation.

6.
J Exp Clin Cancer Res ; 37(1): 84, 2018 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-29665843

RESUMO

BACKGROUND: Improvement in genetic characterization of Colon Cancer (CC) patients is required to propose new potential targets, since surgical resection coupled to chemotherapy, presents several limits such as cancer recurrence and drug resistance. Targeted therapies have more efficacy and less toxicity than standard treatments. One of the most relevant cancer-specific actionable targets are receptor tyrosine kinases (RTKs) whose role in CC need to be better investigated. METHODS: We have analysed 37 CC patients using the Ion AmpliSeq™ Comprehensive Cancer Panel (CCP). We have confirmed the somatic nature of RET variants through Sanger sequencing and assessed RET activation status and protein expression by immunofluorescence and western-blot analyses. We have used RET mutant expression vectors to evaluate the effect of selected mutations in HEK293 cells by performing proliferation, migration and clonogenic assays. RESULTS: Among the 409 cancer-related genes included in the CCP we have focused on the RTKs. Overall, we have observed 101 different potentially damaging variants distributed across 31 RTK genes in 28 patients. The most frequently mutated RTKs were FLT4, ROS1, EPH7, ERBB2, EGFR, RET, FGFR3 and FGFR4. In particular, we have identified 4 different somatic variants in 10% of CC patients in RET proto-oncogene. Among them, we have demonstrated that the G533C variant was able to activate RET by promoting dimer formation and enhancing Y1062 phosphorylation. Moreover, we have demonstrated that RET G533C variant was able to stimulate anchorage-dependent proliferation, migration and clonogenic cell survival. Notably, the effects induced by the RET G533C variant were abolished by vandetanib. CONCLUSIONS: The discovery of pathogenic variants across RTK genes in 75% of the CC patients under analysis, suggests a previously underestimated role for RTKs in CC development. The identification of a gain-of-function RET mutation in CC highlights the potential use of RET in targeted therapy.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Idoso , Idoso de 80 Anos ou mais , Mutação com Ganho de Função , Humanos , Pessoa de Meia-Idade , Proto-Oncogene Mas , Transfecção
7.
Best Pract Res Clin Endocrinol Metab ; 31(3): 307-318, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28911727

RESUMO

RET receptor tyrosine kinase acts as a mutated oncogenic driver in several human malignancies and it is over-expressed in other cancers. Small molecule compounds with RET tyrosine kinase inhibitory activity are being investigated for the targeted treatment of these malignancies. Multi-targeted compounds with RET inhibitory concentration in the nanomolar range have entered clinical practice. This review summarizes mechanisms of RET oncogenic activity and properties of new compounds that, at the preclinical stage, have demonstrated promising anti-RET activity.


Assuntos
Antineoplásicos/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-ret/antagonistas & inibidores , Neoplasias da Glândula Tireoide/tratamento farmacológico , Animais , Humanos , Terapia de Alvo Molecular/métodos , Fosforilação , Proteínas Tirosina Quinases/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia
8.
Angew Chem Int Ed Engl ; 54(30): 8717-21, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-26126987

RESUMO

Oncogenic conversion of the RET (rearranged during transfection) tyrosine kinase is associated with several cancers. A fragment-based chemical screen led to the identification of a novel RET inhibitor, Pz-1. Modeling and kinetic analysis identified Pz-1 as a type II tyrosine kinase inhibitor that is able to bind the "DFG-out" conformation of the kinase. Importantly, from a single-agent polypharmacology standpoint, Pz-1 was shown to be active on VEGFR2, which can block the blood supply required for RET-stimulated growth. In cell-based assays, 1.0 nM of Pz-1 strongly inhibited phosphorylation of all tested RET oncoproteins. At 1.0 mg kg(-1) day(-1) per os, Pz-1 abrogated the formation of tumors induced by RET-mutant fibroblasts and blocked the phosphorylation of both RET and VEGFR2 in tumor tissue. Pz-1 featured no detectable toxicity at concentrations of up to 100.0 mg kg(-1), which indicates a large therapeutic window. This study validates the effectiveness and usefulness of a medicinal chemistry/polypharmacology approach to obtain an inhibitor capable of targeting multiple oncogenic pathways.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-ret/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Desenho de Fármacos , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Nus , Modelos Moleculares , Células NIH 3T3 , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Fosforilação/efeitos dos fármacos , Polifarmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-ret/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
9.
Am J Physiol Renal Physiol ; 306(10): F1243-50, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24647711

RESUMO

Both experimental and clinical studies have suggested that any potential treatment of polycystic kidney disease (PKD) should start early and last for a long time to be effective, with unavoidable side reactions and considerable costs. The aim of the present study was to test how low doses of rapamycin (RAPA; 0.15 mg/kg ip for 4 days/wk), tolvaptan (TOLV; 0.005% in diet), or AEZ-131 (AEZ; a novel ERK inhibitor, 30 mg/kg for 3 days/wk by gavage), alone and in association, affect the progression of polycystic renal disease in PCK rats. Rats were treated for 8 wk starting at 4-6 wk of age. The efficacy of low doses of such drugs in inhibiting their respective targets was confirmed by immunoblot experiments. Compared with rats in the control (CON) group, RAPA treatment caused a significant reduction in cyst volume density (CVD; -19% vs. the CON group) and was numerically similar to that in TOLV-treated rats (-18%, not significiant), whereas AEZ treatment was not effective. RAPA + TOLV treatment resulted in a significantly lower CVD (-49% vs. the CON group) and was associated with a striking decrease in cAMP response element-binding protein phosphorylation, and similar data were detected in RAPA + AEZ-treated rats (-42%), whereas TOLV + AEZ treatment had virtually no effect. RAPA administration significantly lessened body weight gain, whereas TOLV administration resulted a mild increase in diuresis and a significant increase in cAMP urinary excretion. Histological data of tubular proliferation were in full agreement with CVD data. In conclusion, this study demonstrates that the association of low doses of RAPA, TOLV, and AEZ slows the progression of PKD with limited side effects, suggesting the use of combined therapies also in clinical trials.


Assuntos
Benzazepinas/uso terapêutico , Progressão da Doença , Inibidores Enzimáticos/uso terapêutico , Doenças Renais Policísticas/tratamento farmacológico , Sirolimo/uso terapêutico , Animais , Benzazepinas/farmacologia , AMP Cíclico/metabolismo , Modelos Animais de Doenças , Quimioterapia Combinada , Inibidores Enzimáticos/farmacologia , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Doenças Renais Policísticas/metabolismo , Doenças Renais Policísticas/patologia , Ratos , Ratos Endogâmicos , Ratos Mutantes , Ratos Sprague-Dawley , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Tolvaptan , Resultado do Tratamento
10.
Clin Cancer Res ; 20(6): 1513-20, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24449826

RESUMO

PURPOSE: Calcium/calmodulin-dependent kinase II (CaMKII) is involved in the regulation of cell proliferation. Its endogenous inhibitor (hCaKIINα) is expressed in some cell types. We determined the role of CaMKII in RET-stimulated proliferation and hCaMKIINα in medullary thyroid carcinoma (MTC). EXPERIMENTAL DESIGN: We analyzed the role of RET mutants on CaMKII activation in NIH3T3 and in MTC cell lines, and determined the effect of CaMKII inhibition on RET/ERK pathway and cell proliferation. Then the expression of hCaKIINα mRNA was determined by real-time PCR in primary MTC and it was correlated with some clinicopathologic parameters. RESULTS: RET(C634Y) and RET(M918T) mutants expressed in NIH3T3 cells induced CaMKII activation. CaMKII was activated in unstimulated MTC cells carrying the same RET mutants and it was inhibited by RET inhibition. Inhibition of CaMKII in these cells induced a reduction of Raf-1, MEK, and ERK phosphorylation, cyclin D expression, and cell proliferation. hCaKIINα mRNA expression in primary MTC was very variable and did not correlate with gender and age at diagnosis. Serum calcitonin, (R(2) = 0.032; P = 0.017), tumor volume (P = 0.0079), lymph node metastasis (P = 0.033), and staging (P = 0.0652) were negatively correlated with the hCaKIINα mRNA expression. CONCLUSIONS: CaMKII is activated by RET mutants and is activated at baseline in MTC cells where it mediates the oncogenic pathway leading to cell proliferation. The mRNA expression of its endogenous inhibitor hCaKIINα inversely correlates with the severity of MTC. CaMKII might represent a new target for MTC therapy and hCaKIINα is a marker of disease extension.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteínas/metabolismo , Transdução de Sinais/fisiologia , Neoplasias da Glândula Tireoide/enzimologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Western Blotting , Carcinoma Neuroendócrino , Proliferação de Células , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Mutação , Células NIH 3T3 , Proteínas Proto-Oncogênicas c-ret/genética , Reação em Cadeia da Polimerase em Tempo Real
11.
J Clin Endocrinol Metab ; 98(5): E811-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23526464

RESUMO

CONTEXT: The RET tyrosine kinase encoding gene acts as a dominantly transforming oncogene in thyroid carcinoma and other malignancies. Ponatinib (AP24534) is an oral ATP-competitive tyrosine kinase inhibitor that is in advanced clinical experimentation in leukemia. OBJECTIVE: We tested whether ponatinib inhibited RET kinase and oncogenic activity. METHODS: Ponatinib activity was studied by an in vitro RET immunocomplex kinase assay and immunoblotting. The effects of ponatinib on proliferation of human TT, MZ-CRC-1, and TPC-1 thyroid carcinoma cells, which harbor endogenous oncogenic RET alleles, and of NIH3T3 fibroblasts transfected with oncogenic RET mutants were determined. Ponatinib activity on TT cell xenografted tumors in athymic mice was measured. RESULTS: Ponatinib inhibited immunopurified RET kinase at the IC50 of 25.8 nM (95% confidence interval [CI] = 23.15-28.77 nM). It also inhibited (IC50 = 33.9 nM; 95% CI = 26.41-43.58 nM) kinase activity of RET/V804M, a RET mutant displaying resistance to other tyrosine kinase inhibitor. Ponatinib blunted phosphorylation of point-mutant and rearranged RET-derived oncoproteins and inhibited proliferation of RET-transformed fibroblasts and RET mutant thyroid carcinoma cells. Finally, after 3 weeks of treatment with ponatinib (30 mg/kg/d), the volume of TT cell (medullary thyroid carcinoma) xenografts was reduced from 133 mm³ to an unmeasurable size (difference = 133 mm³, 95% CI = -83 to 349 mm³) (P < .001). Ponatinib-treated TT cell tumors displayed a reduction in the mitotic index, RET phosphorylation, and signaling. CONCLUSIONS: Ponatinib is a potent inhibitor of RET kinase and has promising preclinical activity in models of RET-driven medullary thyroid carcinoma.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma/tratamento farmacológico , Imidazóis/uso terapêutico , Proteínas Mutantes/antagonistas & inibidores , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-ret/antagonistas & inibidores , Piridazinas/uso terapêutico , Neoplasias da Glândula Tireoide/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Carcinoma/genética , Carcinoma/metabolismo , Carcinoma/patologia , Carcinoma Neuroendócrino , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Imidazóis/farmacologia , Camundongos , Camundongos Nus , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Proto-Oncogênicas c-ret/metabolismo , Piridazinas/farmacologia , Distribuição Aleatória , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/metabolismo , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
12.
PLoS One ; 7(8): e43646, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22928011

RESUMO

XB130, a novel adaptor protein, mediates RET/PTC chromosome rearrangement-related thyroid cancer cell proliferation and survival through phosphatidyl-inositol-3-kinase (PI3K)/Akt pathway. Recently, XB130 was found in different cancer cells in the absence of RET/PTC. To determine whether RET/PTC is required of XB130-related cancer cell proliferation and survival, WRO thyroid cancer cells (with RET/PTC mutation) and A549 lung cancer cells (without RET/PTC) were treated with XB130 siRNA, and multiple Akt down-stream signals were examined. Knocking-down of XB130 inhibited G(1)-S phase progression, and induced spontaneous apoptosis and enhanced intrinsic and extrinsic apoptotic stimulus-induced cell death. Knocking-down of XB130 reduced phosphorylation of p21Cip1/WAF1, p27Kip1, FOXO3a and GSK3ß, increased p21Cip1/WAF1protein levels and cleavages of caspase-8 and-9. However, the phosphorylation of FOXO1 and the protein levels of p53 were not affected by XB130 siRNA. We also found XB130 can be phosphorylated by multiple protein tyrosine kinases. These results indicate that XB130 is a substrate of multiple protein tyrosine kinases, and it can regulate cell proliferation and survival through modulating selected down-stream signals of PI3K/Akt pathway. XB130 could be involved in growth and survival of different cancer cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Humanos , Translocação Genética
13.
Cancer Res ; 72(6): 1449-58, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22271686

RESUMO

CD44 is a marker of cancer stem-like cells and epithelial-mesenchymal transition that is overexpressed in many cancer types, including thyroid carcinoma. At extracellular and intramembranous domains, CD44 undergoes sequential metalloprotease- and γ-secretase-mediated proteolytic cleavage, releasing the intracellular protein fragment CD44-ICD, which translocates to the nucleus and activates gene transcription. Here, we show that CD44-ICD binds to the transcription factor CREB, increasing S133 phosphorylation and CREB-mediated gene transcription. CD44-ICD enhanced CREB recruitment to the cyclin D1 promoter, promoting cyclin D1 transcription and cell proliferation. Thyroid carcinoma cells harboring activated RET/PTC, RAS, or BRAF oncogenes exhibited CD44 cleavage and CD44-ICD accumulation. Chemical blockade of RET/PTC, BRAF, metalloprotease, or γ-secretase were each sufficient to blunt CD44 processing. Furthermore, thyroid cancer cell proliferation was obstructed by RNA interference-mediated knockdown of CD44 or inhibition of γ-secretase and adoptive CD44-ICD overexpression rescued cell proliferation. Together, these findings reveal a CD44-CREB signaling pathway that is needed to sustain cancer cell proliferation, potentially offering new molecular targets for therapeutic intervention in thyroid carcinoma.


Assuntos
Carcinoma Papilar/patologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Receptores de Hialuronatos/metabolismo , Proteólise , Neoplasias da Glândula Tireoide/patologia , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/genética , Animais , Carcinoma Papilar/genética , Carcinoma Papilar/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Ciclina D1/genética , Ciclina D1/metabolismo , Humanos , Metaloproteases/antagonistas & inibidores , Metaloproteases/genética , Oncogenes/efeitos dos fármacos , Fosforilação , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Proto-Oncogênicas c-ret/metabolismo , Ratos , Transdução de Sinais , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Transcrição Gênica
14.
J Clin Endocrinol Metab ; 96(1): E19-30, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20926530

RESUMO

CONTEXT: The oncogenic BRAF(V600E) mutation results in an active structural conformation characterized by greatly elevated ERK activity. However, additional cellular effects caused by subcellular action of BRAF(V600E) remain to be identified. OBJECTIVE: To explore these effects, differences in the subcellular localization of wild-type and mutant BRAF in thyroid cancer were investigated. RESULTS: A significant proportion of endogenous and exogenous BRAF(V600E), but not wild-type BRAF, was detected in the mitochondrial fraction, similar to other BRAF mutants including BRAF(V600D), BRAF(V600K), BRAF(V600R), and BRAF(G469A), which showed elevated kinase activity and mitochondrial localization. Induced expression of BRAF(V600E) suppressed the apoptotic responses against staurosporine and TNFα/cycloheximide. Interestingly, the mitochondrial localization and antiapoptotic activities of BRAF(V600E) were unaffected by sorafenib and U0126 suppression of MAPK kinase (MEK) and ERK activities. Similarly, although the RAF inhibitor sorafenib effectively inhibited MEK/ERK activation, it did not block the mitochondrial localization of BRAF(V600E). In addition, inducible expression of BRAF(V600E) increased the glucose uptake rate and decreased O(2) consumption, suggesting that BRAF(V600E) reduces mitochondrial oxidative phosphorylation, a signature feature of cancer cells. Again, these metabolic alterations resulted by BRAF(V600E) expression were not affected by the treatment of thyroid cells by sorafenib. Therefore, RAF and MEK inhibitors are unable to block the antiapoptotic activity of BRAF(V600E) or correct the high glucose uptake rate and glycolytic activity and suppressed mitochondrial oxidative phosphorylation induced by BRAF(V600E). CONCLUSIONS: The mitochondrial localization observed in oncogenic BRAF mutants might be related to their altered responses to apoptotic stimuli and characteristic metabolic phenotypes found in thyroid cancer. The inability of MEK and RAF inhibitors, U0126 and sorafenib, respectively, to block the mitochondrial localization of BRAF(V600E) has additional therapeutic implications for BRAF(V600E)-positive thyroid cancers.


Assuntos
Benzenossulfonatos/farmacologia , Mitocôndrias/genética , Proteínas Proto-Oncogênicas B-raf/genética , Piridinas/farmacologia , Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/genética , Animais , Apoptose/genética , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Imunofluorescência , Humanos , Camundongos , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mutação , Niacinamida/análogos & derivados , Compostos de Fenilureia , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/metabolismo , Sorafenibe , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Neoplasias da Glândula Tireoide/metabolismo
15.
Endocr Relat Cancer ; 18(1): 1-11, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20943719

RESUMO

Oncogenic conversion of the RET tyrosine kinase is a frequent feature of medullary thyroid carcinoma (MTC). ZD6474 (vandetanib) is an ATP-competitive inhibitor of RET, epidermal growth factor receptor (EGFR), and vascular endothelial growth factor receptors kinases. In this study, we have studied ZD6474 mechanism of action in TT and MZ-CRC-1 human MTC cell lines, carrying cysteine 634 to tryptophan (C634W) and methionine 918 to threonine (M918T) RET mutation respectively. ZD6474 blunted MTC cell proliferation and RET, Shc and p44/p42 mitogen-activated protein kinase (MAPK) phosphorylation. Single receptor knockdown by RNA interference showed that MTC cells depended on RET for proliferation. Adoptive expression of the ZD6474-resistant V804M RET mutant rescued proliferation of TT cells under ZD6474 treatment, showing that RET is a key ZD6474 target in these MTC cells. Upon RET inhibition, adoptive stimulation of EGFR partially rescued TT cell proliferation, MAPK signaling, and expression of cell-cycle-related genes. This suggests that simultaneous inhibition of RET and EGFR by ZD6474 may overcome the risk of MTC cells to escape from RET blockade through compensatory over-activation of EGFR.


Assuntos
Carcinoma Medular/tratamento farmacológico , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-ret/antagonistas & inibidores , Quinazolinas/farmacologia , Neoplasias da Glândula Tireoide/tratamento farmacológico , Carcinoma Medular/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/fisiologia , Humanos , Mutação , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Proto-Oncogênicas c-ret/fisiologia , Transdução de Sinais/efeitos dos fármacos , Neoplasias da Glândula Tireoide/patologia , Fator de Crescimento Transformador alfa/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores
16.
J Clin Endocrinol Metab ; 95(1): 450-5, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19880792

RESUMO

CONTEXT: The V600E mutation accounts for the vast majority of thyroid carcinoma-associated BRAF mutations. OBJECTIVE: The aim was to study the effects of the two BRAF V600E ATP-competitive kinase inhibitors, PLX4032 and PLX4720, in thyroid carcinoma cell lines. EXPERIMENTAL DESIGN: We examined the activity of PLX4032 and PLX4720 in thyroid carcinoma cell lines harboring BRAF V600E (8505C, BCPAP, SW1736, BHT101), NRAS Q61R (HTH7), KRAS G12R (CAL62), HRAS G13R (C643), or RET/PTC1 (TPC-1) oncogenes. Normal thyrocytes (PC Cl 3) were used as control. RESULTS: Both compounds inhibited the proliferation of BRAF mutant cell lines, but not normal thyrocytes, with a half maximal effective concentration (EC(50)) ranging from 78-113 nm for PLX4720 and from 29-97 nm for PLX4032. Doses equal to or higher than 500 nm were required to achieve a similar effect in BRAF wild-type cancer cells. Phosphorylation of ERK 1/2 and MAPK kinase (MEK) 1/2 decreased upon PLX4032 and PLX4720 treatment in BRAF mutant thyroid carcinoma cells but not in normal thyroid cells or in cell lines harboring mutations of RAS or RET/PTC1 rearrangements. PLX4032 and PLX4720 treatment induced a G(1) block and altered expression of genes involved in the control of G(1)-S cell-cycle transition. 8505C cell tumor xenografts were smaller in nude mice treated with PLX4032 than in control mice. This inhibition was associated with reduction of phospho-ERK and phospho-MEK levels. CONCLUSIONS: This study provides additional evidence of the promising nature of mutant BRAF as a molecular target for thyroid carcinoma cells.


Assuntos
Carcinoma/patologia , Citostáticos/farmacologia , Indóis/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Sulfonamidas/farmacologia , Neoplasias da Glândula Tireoide/patologia , Trifosfato de Adenosina/antagonistas & inibidores , Trifosfato de Adenosina/metabolismo , Ligação Competitiva/efeitos dos fármacos , Carcinoma/genética , Proliferação de Células/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Proteínas Mutantes/antagonistas & inibidores , Proteínas Mutantes/genética , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Soro/fisiologia , Neoplasias da Glândula Tireoide/genética , Células Tumorais Cultivadas
17.
Endocr Relat Cancer ; 17(1): 113-23, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19903742

RESUMO

RET/papillary thyroid carcinoma (PTC), TRK-T, or activating mutations of Ras and BRaf are frequent genetic alterations in PTC, all leading to the activation of the extracellular-regulated kinase (Erk) cascade. The aim of this study was to investigate the role of calmodulin-dependent kinase II (CaMKII) in the signal transduction leading to Erk activation in PTC cells. In normal thyroid cells, CaMKII and Erk were in the inactive form in the absence of stimulation. In primary PTC cultures and in PTC cell lines harboring the oncogenes RET/PTC-1 or BRaf(V600E), CaMKII was active also in the absence of any stimulation. Inhibition of calmodulin or phospholipase C (PLC) attenuated the level of CaMKII activation. Expression of recombinant RET/PTC-3, BRaf(V600E), or Ras(V12) induced CaMKII activation. Inhibition of CaMKII attenuated Erk activation and DNA synthesis in thyroid papillary carcinoma (TPC-1), a cell line harboring RET/PTC-1, suggesting that CaMKII is a component of the Erk signal cascade in this cell line. In conclusion, PTCs contain an active PLC/Ca(2+)/calmodulin-dependent signal inducing constitutive activation of CaMKII. This kinase is activated by BRaf(V600E), oncogenic Ras, and by RET/PTC. CaMKII participates to the activation of the Erk pathway by oncogenic Ras and RET/PTC and contributes to their signal output, thus modulating tumor cell proliferation.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/fisiologia , Carcinoma Papilar/enzimologia , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Proteínas de Neoplasias/fisiologia , Neoplasias da Glândula Tireoide/enzimologia , Sequência de Aminoácidos , Animais , Sinalização do Cálcio/fisiologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Calmodulina/fisiologia , Carcinoma Papilar/genética , Carcinoma Papilar/patologia , Divisão Celular , Ativação Enzimática/efeitos dos fármacos , Estrenos/farmacologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Dados de Sequência Molecular , Mutação , Proteínas de Neoplasias/antagonistas & inibidores , Proteína Oncogênica p21(ras)/fisiologia , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/fisiologia , Proteínas Proto-Oncogênicas c-ret/fisiologia , Pirrolidinonas/farmacologia , Quinazolinas/farmacologia , Ratos , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Fosfolipases Tipo C/fisiologia
18.
Biochim Biophys Acta ; 1793(11): 1634-45, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19735675

RESUMO

BRAF gene mutations have been associated with human cancers. Among the naturally occurring mutations, two that involve amino acids of the conserved DFG motif in the activation loop (D594V and G596R), appear to be inactivating. Aim of this study was to analyze the molecular mechanisms involved in the loss of function of B-Raf inactivating mutation G596R. Furthermore, the ability of the B-Raf DFG motif mutants to generate heterodimers with C-Raf and the possible functional consequences of the B-Raf/C-Raf heterodimer formation was examined. Wet molecular experiments in HEK293T cells demonstrate that B-Raf(G596R) is a kinase-impaired mutant. Molecular dynamics simulations show that the loss of function of B-Raf(G596R) depends on a restraining effect of Arg596 on the catalytic residue Asp594, which results in the loss of the appropriate spatial localization and/or conformation of the latter necessary for anchoring ATP to the enzyme. Exploration of B-Raf/C-Raf heterodimer formation indicates the occurrence of functioning heterodimers in the case of all the DFG B-Raf mutants, independently from the expected differences in spatial conformation of the activation loop, although the transforming activity of the mutants appear negligible. In conclusion, this study delivers novel information on the functional properties of the B-Raf DFG motif inactivating mutants and on the mechanisms driving B-Raf/C-Raf heterodimerization and consequent C-Raf transactivation.


Assuntos
Mutação de Sentido Incorreto , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Motivos de Aminoácidos/genética , Substituição de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Humanos , Camundongos , Células NIH 3T3 , Neoplasias/genética , Estrutura Quaternária de Proteína/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas c-raf/genética , Proteínas Proto-Oncogênicas c-raf/metabolismo
19.
J Mol Endocrinol ; 43(4): 143-55, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19383830

RESUMO

Medullary thyroid carcinoma (MTC) is a rare tumour arising from neural crest-derived parafollicular C-cells. Metastatic MTC patients are incurable because the cancer does not respond to radiotherapy or chemotherapy. The REarranged during Transfection (RET) proto-oncogene plays a key role in the development of MTC. However, one-half of the sporadic MTC do not carry RET mutations. Mice models and early evidence obtained in human samples suggest that other genes, including those encoding components of the RB1 (retinoblastoma) and TP53 tumour-suppressor pathways, may be involved in MTC formation. Here, we review the data on the involvement of genes acting in the RET and RB1/TP53 pathways in MTC. Understanding genetic lesions that occur in MTC is a prerequisite to identifying molecular therapeutic targets in MTC and in improving the efficacy of RET-targeted therapies.


Assuntos
Carcinoma Medular/genética , Carcinoma Medular/terapia , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/terapia , Animais , Humanos , Camundongos , Modelos Biológicos , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-ret/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
20.
Cancer Res ; 69(5): 1867-76, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19223551

RESUMO

RET/papillary thyroid carcinoma (RET/PTC) oncoproteins result from the in-frame fusion of the RET receptor tyrosine kinase domain with protein dimerization motifs encoded by heterologous genes. Here, we show that RET/PTC stimulates the beta-catenin pathway. By stimulating PI3K/AKT and Ras/extracellular signal-regulated kinase (ERK), RET/PTC promotes glycogen synthase kinase 3beta (GSK3beta) phosphorylation, thereby reducing GSK3beta-mediated NH(2)-terminal beta-catenin (Ser33/Ser37/Thr41) phosphorylation. In addition, RET/PTC physically interacts with beta-catenin and increases its phosphotyrosine content. The increased free pool of S/T(nonphospho)/Y(phospho)beta-catenin is stabilized as a result of the reduced binding affinity for the Axin/GSK3beta complex and activates the transcription factor T-cell factor/lymphoid enhancer factor. Moreover, through the ERK pathway, RET/PTC stimulates cyclic AMP-responsive element binding protein (CREB) phosphorylation and promotes the formation of a beta-catenin-CREB-CREB-binding protein/p300 transcriptional complex. Transcriptional complexes containing beta-catenin are recruited to the cyclin D1 promoter and a cyclin D1 gene promoter reporter is active in RET/PTC-expressing cells. Silencing of beta-catenin by small interfering RNA inhibits proliferation of RET/PTC-transformed PC Cl3 thyrocytes, whereas a constitutively active form of beta-catenin stimulates autonomous proliferation of thyroid cells. Thus, multiple signaling events downstream from RET/PTC converge on beta-catenin to stimulate cell proliferation.


Assuntos
Carcinoma Papilar/patologia , Proteínas Proto-Oncogênicas c-ret/fisiologia , Transdução de Sinais/fisiologia , Neoplasias da Glândula Tireoide/patologia , beta Catenina/fisiologia , Núcleo Celular/metabolismo , Proliferação de Células , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/fisiologia , Ciclina D1/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Fosfotirosina/análise , Regiões Promotoras Genéticas , Fatores de Transcrição TCF/fisiologia , beta Catenina/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA