Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
1.
Chem Biodivers ; : e202401618, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39258455

RESUMO

Tetraclinis articulata (Vahl) Mast. is native to the Mediterranean area and belongs to Cupressaceae family. The aim of this study were: i) to determine the chemical composition of essential oils (EOs) of T. articulata obtained from its stems, leaves, and cones using GC coupled to GC/MS; II) to evaluate their antioxidant activity using non enzymatic (DPPH, ABTS and FRAP) and enzymatic methods (catalase activity); III) to evaluated their anti-enzymatic activity on enzyme involved in metabolism and Central Nervous System using spectrophotometric assays.α-Pinene, limonene, and bornyl acetate were the main components of the three EOs. Moreover, the EO from cones showed the best antioxidant activity and was also able to increase of catalase activity. All EOs were active against α-amylase in similar way; the EO leaves was more active against α-glucosidase and the EO from cones was more active against cholinesterase. The EOs demonstrated significant inhibition of the mature biofilm of Gram-negative and Gram-positive strains. This highlight the potential uses of T. articulata EOs in the fields of health and agriculture.

2.
Heliyon ; 10(14): e34518, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39113961

RESUMO

Many plants can produce essential oils (EOs), having various biological properties. This study evaluated the antioxidant, anti-enzymatic and antimicrobial effects of the EOs derived from leaves of Eucalyptus cladocalyx, E. angulosa, E. microcorys, E. ovata, E. diversicolor, E. saligna, E. sargentii and E. resinifera. The antioxidant activity of the EOs was carried out with three different methods (ABTS, DPPH and FRAP). In addition, their anti-colinesterases, anti α-amylase and anti α-glucosidase effects were assessed by spectrophotometric assays. The antimicrobial activities were tested against six phytopathogenic bacterial strains, including two G + ve (Bacillus mojavensis and Clavibacter michiganensis) and four G-ve (Pseudomonas fluorescence, P. syringae, Xanthomonas campestris and E. coli). The current study has also investigated the inhibition of biofilm formation and the possible effect on bacterial cells biofilm metabolism of three Gram-negative (Pseudomonas aeruginosa, Escherichia coli and Acinetobacter baumannii) and two Gram-positive pathogenic bacteria (Staphylococcus aureus and Listeria monocytogenes). The ABTS and DPPH tests indicated that E. diversicolor and E. saligna EOs showed high antioxidant activities, whereas FRAP test suggested that E. diversicolor EO exhibited the better antioxidant activity. E. resinifera and E. ovata EOs were the most active against cholinesterases instead E. ovata and E. sargentii EOs were more active against enzymes involved in diabetes. Antibacterial assays revealed that E. ovata and E. saligna EOs possess significant activity closely to tetracycline. Whereas, the antifungal assay revealed that all EOs have effectively suppressed the tested fungal growth. E. saligna EO showed substantial efficacy inhibiting both the mature biofilm (85.40 %) and metabolic activities (89.80 %) of L. monocytogenes. These results demonstrate the wide range of possible uses for Eucalyptus EOs in both agriculture and medicine fields, suggesting potential uses as strong antibiofilm agents and for biocontrol of phytopathogens.

3.
Fitoterapia ; 177: 106047, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38838824

RESUMO

This study determined chemical profiles, antibacterial and antibiofilm activities of the essential oils (EOs) obtained by A. visnaga aerial parts and F. vulgare fruits. Butanoic acid, 2-methyl-, 3-methylbutyl ester (38.8%), linalyl propionate (34.7%) and limonene (8.5%) resulted as main constituents of A. visnaga EO. In F. vulgare EO trans-anethole (76.9%) and fenchone (14.1%) resulted as main components. The two EOs were active against five bacterial strains (Acinetobacter baumannii, Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, and Staphylococcus aureus) at different degrees. The MIC values ranged from 5 ± 2 to 10 ± 2 µL/mL except for S. aureus (MIC >20 µL/mL). EOs exhibited inhibitory effect on the formation of biofilm up to 53.56 and 48.04% against E. coli and A. baumannii, respectively and activity against bacterial metabolism against A. baumannii and E. coli, with biofilm-inhibition ranging from 61.73 to 73.55%. The binding affinity of the identified components was estimated by docking them into the binding site of S. aureus gyrase (PDB code 2XCT) and S. aureus tyrosyl-tRNA synthetase (PDB code 1JIJ). trans-Anethole and butanoic acid, 2-methyl-, 3-methylbutyl ester showed relatively moderate binding interactions with the amino acid residues of S. aureus tyrosyl-tRNA synthetase. In addition, almost all predicted compounds possess good pharmacokinetic properties with no toxicity, being inactive for cytotoxicity, carcinogenicity, hepatotoxicity, mutagenicity and immunotoxicity parameters. The results encourage the use of these EOs as natural antibacterial agents in food and pharmaceutical industries.


Assuntos
Derivados de Alilbenzenos , Antibacterianos , Biofilmes , Foeniculum , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Óleos Voláteis , Biofilmes/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Foeniculum/química , Myrtaceae/química , Frutas/química , Anisóis/farmacologia , Anisóis/química , Anisóis/isolamento & purificação , Componentes Aéreos da Planta/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/química , Canfanos , Norbornanos
4.
Heliyon ; 10(9): e29905, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38720723

RESUMO

The Eucalyptus genus, characterized by its imposing stature and fragrant foliage, has been a source of fascination for humanity over the centuries. The focus of the present investigation was directed towards the essentials oils (EOs) of five Eucalyptus trees cultivated in Tunisia. The GC-MS analysis unveiled unique compositional profiles, a finding substantiated by both Hierarchical Clustering Analysis (HCA) and Principal Component Analysis (PCA) conducted on the leaves EOs. These analyses resulted in the formation of discrete HCA clades, delineating 23 significant components. Notably, the percentage of eucalyptol emerged as the pivotal factor demarcating the separation between three distinct groups. The statistical analysis revealed a dose-dependent relationship in both phytotoxicity evaluation and antibacterial activity. The EOs from Eucalyptus loxophleba and E. salubris exhibited the highest phytotoxicity, inhibiting radical elongation and germination of various seeds, especially Sinapis arvensis and Raphanus sativus. The antimicrobial assessment demonstrated significant inhibitory effects of the EOs on bacterial strains, with MIC values spanning from 14 to exceeding 50 mg/ml. The EOs also affected biofilm formation and cellular metabolism, displaying varied efficacy among different Eucalyptus species against some bacterial strains. The EOs exhibited selective inhibition against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), α-amylase, and α-glucosidase. E. campaspe EO showed the highest AChE activity, while E. loxophleba and E. salubris EOs were most potent toward α-amylase. E. loxophleba EO demonstrated notable activity against α-glucosidase. Overall, these findings provide important data about the diverse biological activities of Eucalyptus EOs, suggesting potential applications in agriculture, medicine, and pharmacy.

5.
Antioxidants (Basel) ; 13(4)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38671929

RESUMO

Honey can beneficially act against different human diseases, helping our body to improve its health. The aim of the present study was first to increase knowledge of some biochemical characteristics (amount and composition of polyphenols and volatile organic compounds, vitamin C content) of five Italian legume honeys (alfalfa, astragalus, carob, indigo, and sainfoin). Furthermore, we evaluated their potential health properties by studying their antioxidant and in vitro anti-inflammatory activities and in vitro inhibitory effects on three enzymes involved in neurodegenerative diseases (acetylcholinesterase, butyrylcholinesterase, and tyrosinase). Alfalfa honey showed the highest total polyphenol content (TPC) (408 µg g-1 of product). Indigo honey showed the lowest TPC (110 µg g-1 of product). The antioxidant activity was noteworthy, especially in the case of sainfoin honey (IC50 = 6.08 mg), which also exhibited excellent inhibitory action against butyrylcholinesterase (74%). Finally, the correlation between the biochemical and functional results allowed us to identify classes of molecules, or even single molecules, present in these five honeys, which are capable of influencing the properties indicated above.

6.
Plants (Basel) ; 13(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38592817

RESUMO

Artemisia arborescens is a Mediterranean evergreen shrub, with silver grey-green tomentose leaves and a strong scent. It has various ethnopharmacological uses and its secondary metabolites have demonstrated antimicrobial, antiviral, pharmaceutical, phytotoxic, and insecticidal activities. Different extracts obtained from aerial parts of this species are known for their allelopathic effect, but similar studies on its essential oil (EO) are lacking. Therefore, we carried out a pharmacognostic study, obtaining the characterization of the secretory structures and the EO produced. Trans-thujone and camphor are the main components, followed by aromadendrene, camphene, and 8-cedren-13-ol. EO phytotoxic activity was tested on weed plants (Lolium multiflorum Lam. and Sinapis arvensis L.) and crops (Raphanus sativus L. and Cucumis sativus L.), showing inhibition on both germination and radical growth of the two weeds tested. The effects of the EO against the bacterial plant pathogens Xanthomonas campestris pv. campestris (Gram-) and Pseudomonas syringae pv. tomato (Gram+) was also assayed. The minimum inhibitory concentration (MIC) was observed when it was used undiluted [100% v/v], and growth inhibition when diluted at different doses. The antimicrobial activity was also confirmed by the cellular material release and biofilm formation assays. The overall data show that A. arborescens EO can find application as a potential alternative biocontrol product against weeds and plant pathogens. This goal is particularly important from the perspective of replacing synthetic pesticides with natural products, which safeguard both the environment and the health of consumers.

7.
Plants (Basel) ; 13(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38611496

RESUMO

BACKGROUND: The 2015 Nobel Prize in Medicine, awarded for the discovery of artemisinin in Artemisia annua, reignited interest in aromatic plants, including Artemisia absinthium L. This article delves into the historical, ethnopharmacological and medicinal significance of A. absinthium, examining its bitter taste noted since ancient Greek times and its association with medicinal properties throughout history. Despite being banned in the 20th century due to perceived health risks; recent research has led to the reconsideration of A. absinthium's potential applications. This study focuses on the prebiotic efficacy of essential oils (EOs) from two Artemisia species: A. absinthium and A. annua. MATERIALS AND METHODS: A broth microdilution test, growth curve test and in vivo models were used to study the impact of low doses (from 0.5% v/v to 0.00048 v/v) of Artemisia spp-EO on the three probiotic strains (Lactobacillus, Lactobacillus casei and Saccharomyces boulardii). RESULTS: These essential oils, when used in minimal concentrations (lower than 0.06% v/v), are safe and exhibit prebiotic effects on major probiotic strains, supporting the traditional culinary use of Artemisia spp. CONCLUSION: This research opens avenues for potential applications in the food industry, emphasizing the need for further exploration into the prebiotic properties of Artemisia spp-EOs and their influence on the microbiota.

8.
Chem Biodivers ; 21(5): e202400274, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38466647

RESUMO

The aim of the current study was to compare some biological activities of edible oils enriched with 10 % of cannabidiol (CBD samples) from the Slovak market. In addition, hemp, coconut, argan, and pumpkin pure oils were also examined. The study evaluated the fatty acids content, as well as antibacterial, antifungal, antioxidant, cytotoxic, and phytotoxic activities. The CBD samples presented antimicrobial activity against the tested bacterial strains at higher concentrations (10000 and 5000 mg/L) and antifungal activity against Alternaria alternata, Penicillium italicum and Aspergillus flavus. DPPH⋅ and FRAP assays showed greater activity in CBD-supplemented samples compared to pure oils and vitamin E. In cell lines (IPEC-J2 and Caco-2), a reduced cell proliferation and viability were observed after 24 hours of incubation with CBD samples. The oils showed pro-germinative effects. The tested activities were linked to the presence of CBD in the oils.


Assuntos
Antioxidantes , Canabidiol , Proliferação de Células , Canabidiol/farmacologia , Canabidiol/química , Humanos , Proliferação de Células/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/química , Testes de Sensibilidade Microbiana , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Óleos de Plantas/farmacologia , Óleos de Plantas/química , Antifúngicos/farmacologia , Antifúngicos/química , Penicillium/efeitos dos fármacos , Alternaria/efeitos dos fármacos , Aspergillus flavus/efeitos dos fármacos
10.
Heliyon ; 10(1): e23656, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38187260

RESUMO

Callitris glaucophylla Joy Thomps. & L.A.S. Johnson is a coniferous forest species of the Cupressaceae family native to Australia. This species is rich in essential oils (EOs) but few studies about variability and biological activity of these EOs are available in the literature. The purpose of this study was to evaluate the variability of production of C. glaucophylla EOs in relation to the different plant parts (needles, cones and stems) and to investigate their antioxidant, anti-enzymatic and herbicidal properties. EOs were obtained by hydro distillation and analyzed by GC and GC-MS. The antioxidant potential of EOs was assessed by ABTS, FRAP and DPPH assays, their phytotoxic activities were evaluated against germination and shoots and radical growth of Sinapis arvensis, Trifolium campestre, Lepidium sativum and Lolium rigidum. The EOs were evaluated for their possible anti-enzymatic effects with spectrophotometric assay. EOs resulted rich in monoterpenes hydrocarbons (61.04-77.82 %) and oxygenated monoterpenes (19.52-25.26 %). The main compounds were α-pinene as major compound in all plant parts (36.99-59.84 %), 1,8-cineole (19.88 % in stems) and limonene (18.94 % in needles). Herbicidal assays showed that all EOs have remarkable and significant phytotoxicity towards germination, roots, and aerial parts growth of the tested plants, depending on the EO, the doses and tested species. The EOs showed significant free radical scavenging potential and resulted more active against cholinesterases than α-glucosidase and α-amylase. The data obtained constitute an important contribution in selecting and valorizing appropriate forestry tree biomass as sources of antioxidant and phytotoxic molecules for sustainable application in food preservation and weeds control. The activities against the tested enzymes confirmed a possible use of these EOs as natural pesticides.

11.
Pharmaceuticals (Basel) ; 16(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38139796

RESUMO

Citrus, which belongs to the Rutaceae family, is a very widespread genus in the Mediterranean Basin. In Tunisia, various parts of these spontaneous or cultivated plants are used in common dishes or in traditional medicine. The purpose of this work was to investigate C. limon and C. paradisi essential oil (EO). The samples were studied for their chemical composition using SPME/MS, as well as their antibacterial and antifungal activities. Prothrombin time (PT) and activated partial thromboplastin time (aPTT) methods were used to evaluate the anticoagulant potentialities. The obtained results show that both essential oils are rich in monoterpenes hydrocarbons, whereby limonene is the main compound in C. paradisi EO (86.8%) and C. limon EO (60.6%). Moreover, C. paradisi EO contains ß-pinene (13.3%), sabinene (2.2%) and α-pinene (2.1%). The antibacterial assay of the essential oils showed important bactericidal and fungicidal effects against all strains tested. In fact, the MICs values of C. limon EO ranged from 0.625 to 2.5 mg/mL against all Gram-positive and Gram-negative bacteria, and from 6.25 to 12.5 mg/mL for Candida spp. strains, while C. paradisi EO was more active against all bacteria with low MICs values ranging from 0.192 to 0.786 mg/mL, and about 1.5 mg/mL against Candida species. Both tested Citrus EOs exhibited interesting anticoagulant activities as compared to heparin. The molecular docking approach was used to study the binding affinity and molecular interactions of all identified compounds with active sites of cytidine deaminase from Klebsiella pneumoniae (PDB: 6K63) and the C (30) carotenoid dehydrosqualene synthase from Staphylococcus aureus (PDB: 2ZCQ). The obtained results show that limonene had the highest binding score of -4.6 kcal.mol-1 with 6K63 enzyme, and -6.7 kcal.mol-1 with 2ZCQ receptor. The ADME profiling of the major constituents confirmed their important pharmacokinetic and drug-like properties. Hence, the obtained results highlight the potential use of both C. limon and C. paradisi essential oils as sources of bioactive compounds with antibacterial, antifungal, and anti-coagulant activities.

12.
Molecules ; 28(21)2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37959858

RESUMO

Plants with medicinal benefits are a crucial source of compounds for developing drugs. This study was designed to determine the chemical composition, antibacterial, antibiofilm, antioxidant, and anti-enzymatic activities of Pulicaria incisa (Lam.) DC. We also reported the molecular interaction between identified molecules and several receptors associated with antimicrobial and antibiofilm activities. A total of seventeen and thirteen compounds were identified in aqueous and methanolic extracts of P. incisa, respectively. The methanolic extract yielded a higher total content of polyphenols and flavonoids of about 84.80 ± 2.8 mg GAE/g and 28.30 ± 1.2 mg QE/g, respectively. Significant antibacterial activity was recorded for both extracts, with minimum inhibitory concentration (MIC) values ranging from 30 to 36 µg/mL, and the result was comparable to the reference antibiotic control. Antibiofilm assays revealed that both extracts were able to reduce the attachment of bacterial cells to 96-well plates, but the highest antibiofilm activity was recorded against Staphylococcus aureus. The methanolic extract also showed anti-enzymatic potency and high antioxidant activity, as demonstrated by all assays used, including DPPH, FRAP, and ABTS. These results were further validated by in silico approaches, particularly the molecular interaction of the identified compounds with the targeted receptors. These findings present P. incisa as a significant source of antibacterial, antibiofilm, antioxidant, and anti-enzymatic molecules.


Assuntos
Antioxidantes , Pulicaria , Antioxidantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/farmacologia , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Metanol
14.
Molecules ; 28(20)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37894690

RESUMO

This study was conducted to examine the chemical composition of the essential oils (EOs) from six Tunisian Eucalyptus species and to evaluate their anti-enzymatic and antibiofilm activities. The EOs were obtained through hydro-distillation of dried leaves and subsequently analyzed using GC/MS. The main class of compounds was constituted by oxygenated monoterpenes, particularly prominent in E. brevifolia (75.7%), E. lehmannii (72.8%), and E. woollsiana (67%). Anti-enzymatic activities against cholinesterases, α-amylase, and α-glucosidase were evaluated using spectrophotometric methods. Notably, the E. brevifolia, E. extensa, E. leptophylla, E. patellaris, and E. woollsiana EOs displayed potent acetylcholinesterase (AChE) inhibition (IC50: 0.25-0.60 mg/mL), with E. lehmannii exhibiting lower activity (IC50: 1.2 mg/mL). E. leptophylla and E. brevifolia showed remarkable α-amylase inhibition (IC50: 0.88 mg/mL), while E. brevifolia and E. leptophylla significantly hindered α-glucosidase (IC50 < 30 mg/mL), distinguishing them from other EOs with limited effects. Additionally, the EOs were assessed for their anti-biofilm properties of Gram-positive (Staphylococcus aureus and Listeria monocytogenes) and Gram-negative (Acinetobacter baumannii, Pseudomonas aeruginosa and Escherichia coli) bacterial strains. The E. extensa EO demonstrated the main antibiofilm effect against E. coli and L. monocytogenes with an inhibition > 80% at 10 mg/mL. These findings could represent a basis for possible further use of Eucalyptus EOs in the treatment of human microbial infections and/or as a coadjutant in preventing and treating Alzheimer's disease and/or diabetes mellitus.


Assuntos
Eucalyptus , Óleos Voláteis , Humanos , Eucalyptus/química , Escherichia coli , Tunísia , Acetilcolinesterase/farmacologia , alfa-Glucosidases/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Óleo de Eucalipto/farmacologia , alfa-Amilases , Testes de Sensibilidade Microbiana
15.
Biomed Pharmacother ; 168: 115745, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37871561

RESUMO

Amyloid ß 1-42 (Aß1-42) protein aggregation is considered one of the main triggers of Alzheimer's disease (AD). In this study, we examined the in vitro anti-amyloidogenic activity of the isoindolinone derivative 3-(3-oxoisoindolin-1-yl)pentane-2,4-dione (ISOAC1) and its neuroprotective potential against the Aß1-42 toxicity. By performing the Thioflavin T fluorescence assay, Western blotting analyses, and Circular Dichroism experiments, we found that ISOAC1 was able to reduce the Aß1-42 aggregation and conformational transition towards ß-sheet structures. Interestingly, in silico studies revealed that ISOAC1 was able to bind to both the monomer and a pentameric protofibril of Aß1-42, establishing a hydrophobic interaction with the PHE19 residue of the Aß1-42 KLVFF motif. In vitro analyses on primary cortical neurons showed that ISOAC1 counteracted the increase of intracellular Ca2+ levels and decreased the Aß1-42-induced toxicity, in terms of mitochondrial activity reduction and increase of reactive oxygen species production. In addition, confocal microscopy analyses showed that ISOAC1 was able to reduce the Aß1-42 intraneuronal accumulation. Collectively, our results clearly show that ISOAC1 exerts a neuroprotective effect by reducing the Aß1-42 aggregation and toxicity, hence emerging as a promising compound for the development of new Aß-targeting therapeutic strategies for AD treatment.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Pentanos , Humanos , Doença de Alzheimer/metabolismo , Pentanos/farmacologia , Fragmentos de Peptídeos/toxicidade , Agregados Proteicos
16.
Plants (Basel) ; 12(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37653914

RESUMO

Anethum graveolens L. has been known as an aromatic, medicinal, and culinary herb since ancient times. The main purpose of this study was to determine the chemical composition, antibacterial, antibiofilm, and anti-quorum sensing activities of the essential oil (EO) obtained by hydro-distillation of the aerial parts. Twelve components were identified, representing 92.55% of the analyzed essential oil. Limonene (48.05%), carvone (37.94%), cis-dihydrocarvone (3.5%), and trans-carvone (1.07%) were the main identified constituents. Results showed that the obtained EO was effective against eight bacterial strains at different degrees. Concerning the antibiofilm activity, limonene was more effective against biofilm formation than the essential oil when tested using sub-inhibitory concentrations. The results of anti-swarming activity tested against P. aeruginosa PAO1 revealed that A. graveolens induced more potent inhibitory effects in the swarming behavior of the PAO1 strain when compared to limonene, with a percentage reaching 33.33% at a concentration of 100 µg/mL. The ADME profiling of the identified phytocompounds confirms their important pharmacokinetic and drug-like properties. The in-silico study using molecular docking approaches reveals a high binding score between the identified compounds and known target enzymes involved in antibacterial and anti-quorum sensing (QS) activities. Overall, the obtained results highlight the possible use of A. graveolens EO to prevent food contamination with foodborne pathogenic bacteria.

17.
Foods ; 12(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37761047

RESUMO

Honey is a natural remedy for various health conditions. It exhibits a prebiotic effect on the gut microbiome, including lactobacilli, essential for maintaining gut health and regulating the im-mune system. In addition, monofloral honey can show peculiar therapeutic properties. We in-vestigated some legumes honey's prebiotic properties and potential antimicrobial action against different pathogens. We assessed the prebiotic potentiality of honey by evaluating the antioxidant activity, the growth, and the in vitro adhesion of Lacticaseibacillus casei, Lactobacillus gasseri, Lacticaseibacillus paracasei subsp. paracasei, Lactiplantibacillus plantarum, and Lacticaseibacillus rhamnosus intact cells. We also tested the honey's capacity to inhibit or limit the biofilm produced by five pathogenic strains. Finally, we assessed the anti-biofilm activity of the growth medium of probiotics cultured with honey as an energy source. Most probiotics increased their growth or the in vitro adhesion ability to 84.13% and 48.67%, respectively. Overall, alfalfa honey best influenced the probiotic strains' growth and in vitro adhesion properties. Their radical-scavenging activity arrived at 83.7%. All types of honey increased the antioxidant activity of the probiotic cells, except for the less sensitive L. plantarum. Except for a few cases, we observed a bio-film-inhibitory action of all legumes' honey, with percentages up to 81.71%. Carob honey was the most effective in inhibiting the biofilm of Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, and Staphylococcus aureus; it retained almost entirely the ability to act against the bio-film of E. coli, L. monocytogenes, and S. aureus also when added to the bacterial growth medium instead of glucose. On the other hand, alfalfa and astragalus honey exhibited greater efficacy in acting against the biofilm of Acinetobacter baumannii. Indigo honey, whose biofilm-inhibitory action was fragile per se, was very effective when we added it to the culture broth of L. casei, whose supernatant exhibited an anti-biofilm activity against all the pathogenic strains tested. Conclusions: the five kinds of honey in different ways can improve some prebiotic properties and have an inhibitory biofilm effect when consumed.

18.
Plants (Basel) ; 12(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37687315

RESUMO

Eucalyptus species are known to produce metabolites such as essential oils (EOs) that play an important role in the control of weeds, pests and phytopathogenic fungi. The aims of this study were as follows: (i) to determine the chemical composition of the EOs derived from eight Eucalyptus species growing in Tunisia, and (ii) to study their possible antifungal and herbicidal activities. EOs were obtained by hydrodistillation from the dried leaves of eight Eucalyptus species, namely, E. angulosa, E. cladocalyx, E. diversicolor, E. microcoryx, E. ovata, E. resinifera, E. saligna and E. sargentii, and the determination of their composition was achieved by GC and GC-MS. The EOs' antifungal activities were tested against four Fusarium strains, and the EOs' herbicidal properties were evaluated on the germination and seedling growth of three annual weeds (Trifolium campestre, Lolium rigidum and Sinapis arvensis) and three cultivated crop species (Lepidium sativum, Raphanus sativus and Triticum durum). The EO yields ranged between 0.12 and 1.32%. The most abundant components found were eucalyptol, α-pinene, p-cymene, trans-pinocarveol, α-terpineol and globulol. All EOs showed significant antifungal activity against the four phytopathogenic Fusarium strains. E. cladocalyx EO exhibited the highest level of antifungal activity, and the greatest inhibition of seed germination was obtained even at lowest concentrations used. These findings suggested that E. resinifera, E. ovata and E. cladocalyx EOs could have applications in agriculture as possible biopesticides, as Fusarium antagonists and as bioherbicides.

19.
Plants (Basel) ; 12(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37447117

RESUMO

This study aims to analyze the chemical composition of the essential oils (EOs) obtained from stems and umbels of D. tortuosa as well the assessment of their biological activity. EOs were extracted by hydrodistillation and analyzed by gas chromatography coupled to mass spectrometry (GC/MS). The antioxidant properties were determined by DPPH and ABTS assays. The phytotoxic potential was assessed against dicots weeds (Sinapis arvensis and Trifolium campestre), monocots weeds (Lolium rigidum) and the crop Lepidium sativum. The antifungal activity was evaluated against four target phytopathogenic fungal strains. High diversity of compounds was detected in D. tortuosa Eos, varying among plant parts and consisting mainly of α-pinene (24.47-28.56%), sabinene (16.2-18.6%), α-phellandrene (6.3-11.7%) and cis-ocimene (5.28-7.85%). D. tortuosa EOs exhibited remarkable antioxidant activity, as well as interesting variable antifungal activities depending on the dose and fungi strain. The herbicidal activity of EOs showed significant efficacy on the inhibition of germination and seedling growth of all tested herbs. These results suggest that the EOs of Deverra tortuosa represent a valuable source of antioxidant, antifungal and phytotoxic metabolites and could be potential candidates for pest management, contributing to the promotion of sustainable agriculture.

20.
Plants (Basel) ; 12(9)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37176926

RESUMO

The rhizosphere is a rich source of actinomycetes which can produce several potential biologically active secondary metabolites. The principal goal for this research is to extract, purify, and characterize the bioactive secondary metabolites produced by three different strains of actinomycetes isolated from the rhizosphere of rosemary, black locust, and olive. The plant growth-promoting effect (PGPE) of the studied strains of actinomycetes on Ocimum basilicum L. (basil) and the disease-control effect on necrotic stem lesions of "black leg" caused by Fusarium tabacinum on basil were evaluated in silico. The cell-free culture filtrates from the studied actinomycetes isolates were evaluated in vitro for their antimicrobial activity against some common phytopathogens. The secondary metabolites obtained from the cell-free culture filtrates have been chemically characterized using high-resolution electrospray ionization of liquid-chromatography/mass-spectrometric detection (ESI-(HR)Orbitrap-MS). Results of the in silico trial showed that all studied isolates demonstrated PGPE on basil seedlings, improved some eco-physiological characteristics, and reduced the disease incidence of F. tabacinum. The extracted metabolites from the studied actinomycetes demonstrated antimicrobial activity in a Petri-plates assay. The chemical analysis revealed the presence of 20 different components. This research emphasizes how valuable the examined isolates are for producing bioactive compounds, indicating their putative antimicrobial activity and their potential employment as fungal biocontrol agents. In particular, the obtained results revealed the possibility of green synthesis of some important secondary metabolites, such as N-Acetyl-l-histidinol, Rhizocticin A, and Eponemycin, from actinomycetes. The bioactive metabolites may be successively used to develop novel bio-formulations for both crop protection and/or PGPE.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA