Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 450: 116170, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35843342

RESUMO

Multidrug resistance (MDR) transporters present in placenta and fetal tissues reduce intracellular accumulation of their substrates. Consequently, induction of protein expression may further reduce toxic effects of specific xenobiotics. This work aimed to study whether sustained drug treatments in utero could modulate MDR transporters P-gp, BCRP, and MRP2 and thus impact their fetoprotective action. Pregnant Sprague-Dawley rats were daily treated by gavage with zidovudine (AZT, 60 mg/kg) or lamivudine (3TC, 30 mg/kg) from gestation day (GD) 11 to 20. On GD 21, DNA damage and MDR protein abundance were assessed by comet assay and western blotting, respectively. Moreover, a single IV dose of AZT or 3TC was administered on GD 21 and drug concentrations were measured in maternal blood and fetal liver by HPLC-UV. Chronic exposure to 3TC caused significantly higher DNA damage than AZT in fetal liver cells, whereas no differences were observed in maternal blood cells. Increased levels of BCRP protein were found in the placenta and fetal liver after AZT, but not 3TC, chronic in utero exposure. Contrarily, no modifications in the protein abundance of P-gp or MRP2 were found after sustained exposure to these drugs. The area under the curve of AZT in fetal liver was significantly lower in the AZT-pretreated rats than in the VEH or 3TC groups. Moreover, pre-administration of the BCRP inhibitor gefitinib (20 mg/kg, IP) increased AZT levels to the values observed in the VEH-treated group in this tissue. On the other hand, the disposition of 3TC in maternal blood or fetal liver was not modified after chronic treatment in either group. In conclusion, chronic exposure to AZT selectively induces BCRP expression in the placenta and fetal liver decreasing its own accumulation which may account for the lower DNA damage observed for AZT compared to 3TC in fetal liver cells.


Assuntos
Fármacos Anti-HIV , Inibidores da Transcriptase Reversa , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Fármacos Anti-HIV/farmacologia , Resistência a Múltiplos Medicamentos , Feminino , Feto , Lamivudina/toxicidade , Proteínas de Neoplasias , Placenta , Gravidez , Ratos , Ratos Sprague-Dawley , Inibidores da Transcriptase Reversa/farmacologia , Zidovudina/toxicidade
3.
J Neuroendocrinol ; 32(7): e12885, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32671919

RESUMO

Prolactin (PRL) is a hormone principally secreted by lactotrophs of the anterior pituitary gland. Although the synthesis and exocytosis of this hormone are mainly under the regulation of hypothalamic dopamine (DA), the possibility that the anterior pituitary synthesises this catecholamine remains unclear. The present study aimed to determine if the anterior pituitary produces DA from the precursor l-3,4-dihydroxyphenylalanine (l-dopa). Accordingly, we investigated the expression of aromatic l-amino acid decarboxylase (AADC) enzyme and the transporter vesicular monoamine transporter 2 (VMAT2) in the anterior pituitary, AtT20 and GH3 cells by immunofluorescence and western blotting. Moreover, we investigated the production of DA from l-dopa and its release in vitro. Then, we explored the effects of l-dopa with respect to the secretion of PRL from anterior pituitary fragments. We observed that the anterior pituitary, AtT20 and GH3 cells express both AADC and VMAT2. Next, we detected an increase in DA content after anterior pituitary fragments were incubated with l-dopa. Also, the presence of l-dopa increased DA levels in incubation media and reduced PRL secretion. Likewise, the content of cellular DA increased after AtT20 cells were incubated with l-dopa. In addition, l-dopa reduced corticotrophin-releasing hormone-stimulated adrenocorticotrophic hormone release from these cells after AADC activity was inhibited by NSD-1015. Moreover, DA formation from l-dopa increased apoptosis and decreased proliferation. However, in the presence of NSD-1015, l-dopa decreased apoptosis and increased proliferation rates. These results suggest that the anterior pituitary synthesises DA from l-dopa by AADC and this catecholamine can be released from this gland contributing to the control of PRL secretion. In addition, our results suggest that l-dopa exerts direct actions independently from its metabolisation to DA.


Assuntos
Dopamina/biossíntese , Levodopa/metabolismo , Adeno-Hipófise/metabolismo , Hormônio Adrenocorticotrópico/metabolismo , Animais , Células Cultivadas , Feminino , Hipotálamo/metabolismo , Masculino , Camundongos , Células PC12 , Prolactina/metabolismo , Ratos , Ratos Wistar
4.
Biochem Pharmacol ; 170: 113662, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31606411

RESUMO

Acetaminophen (APAP) administration at therapeutic doses is safe, however overdosing produces hepatocellular injury via a multifactorial mechanism(s) that involves generation of reactive oxygen species (ROS), being the most common cause of acute liver failure (ALF) in the northern hemisphere. Brain alterations induced by APAP intoxication are usually considered secondary to hepatic encephalopathy development due to ALF. Although APAP is primarily metabolized in the liver, it is also distributed and metabolized homogeneously in the brain, affecting brain redox status. Nevertheless, comprehensive studies on the potential of APAP intoxication to produce brain toxicity are scarce. The aim of this study was to characterize the direct toxic effects of APAP in different regions of the brain and on behavior in rats where the magnitude of hepatotoxicity produced is not associated with ALF. The present work demonstrates that APAP intoxication producing hepatotoxicity, but not ALF in rats, is associated with marked hypolocomotion. Our studies also suggest that selective downregulation in dopamine levels in brain areas that regulate motor activity may be responsible, in part, for the decreased locomotion observed with APAP treatment. Furthermore, we observed that the brain histoarchitecture is conserved and that edema is not present. However, an increase in oxidative stress, reactive astrogliosis and a decrease in neuron processes are the main features observed in APAP-intoxicated animals. These effects might be partly due to direct toxic effects of APAP in brain, since the same reactive astrogliosis observed in rats was also observed in rat primary astrocyte cultures exposed to APAP.


Assuntos
Acetaminofen/toxicidade , Analgésicos não Narcóticos/toxicidade , Encéfalo/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Gliose/induzido quimicamente , Locomoção/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Feminino , Gliose/metabolismo , Locomoção/fisiologia , Masculino , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Ratos , Ratos Wistar
5.
Endocr Relat Cancer ; 26(5): 497-510, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30856609

RESUMO

Membrane progesterone receptors are known to mediate rapid nongenomic progesterone effects in different cell types. Recent evidence revealed that mPRα is highly expressed in the rat pituitary, being primarily localized in lactotrophs, acting as an intermediary of P4-inhibitory actions on prolactin secretion. The role of mPRs in prolactinoma development remains unclear. We hypothesize that mPR agonists represent a novel tool for hyperprolactinemia treatment. To this end, pituitary expression of mPRs was studied in three animal models of prolactinoma. Expression of mPRs and nuclear receptor was significantly decreased in tumoral pituitaries compared to normal ones. However, the relative proportion of mPRα and mPRß was highly increased in prolactinomas. Interestingly, the selective mPR agonist (Org OD 02-0) significantly inhibited PRL release in both normal and tumoral pituitary explants, displaying a more pronounced effect in tumoral tissues. As P4 also regulates PRL secretion indirectly, by acting on dopaminergic neurons, we studied mPR involvement in this effect. We found that the hypothalamus has a high expression of mPRs. Interestingly, both P4 and OrgOD 02-0 increased dopamine release in hypothalamus explants. Moreover, in an in vivo treatment, that allows both, pituitary and hypothalamus actions, the mPR agonist strongly reduced the hyperprolactinemia in transgenic females carrying prolactinoma. Finally, we also found and interesting gender difference: males express higher levels of pituitary mPRα/ß, a sex that does not develop prolactinoma in these mice models. Taken together, these findings suggest mPRs activation could represent a novel tool for hyperprolactinemic patients, especially those that present resistance to dopaminergic drugs.


Assuntos
Neoplasias Hipofisárias/prevenção & controle , Progesterona/farmacologia , Prolactina/metabolismo , Prolactinoma/prevenção & controle , Receptores de Dopamina D2/fisiologia , Receptores de Progesterona/agonistas , Animais , Gonadotropina Coriônica Humana Subunidade beta/genética , Gonadotropina Coriônica Humana Subunidade beta/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Neoplasias Hipofisárias/etiologia , Neoplasias Hipofisárias/patologia , Prolactinoma/etiologia , Prolactinoma/patologia , Ratos , Transdução de Sinais
6.
Proc Natl Acad Sci U S A ; 115(13): 3476-3481, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29531031

RESUMO

Excessive dopamine neurotransmission underlies psychotic episodes as observed in patients with some types of bipolar disorder and schizophrenia. The dopaminergic hypothesis was postulated after the finding that antipsychotics were effective to halt increased dopamine tone. However, there is little evidence for dysfunction within the dopaminergic system itself. Alternatively, it has been proposed that excessive afferent activity onto ventral tegmental area dopaminergic neurons, particularly from the ventral hippocampus, increase dopamine neurotransmission, leading to psychosis. Here, we show that selective dopamine D2 receptor deletion from parvalbumin interneurons in mouse causes an impaired inhibitory activity in the ventral hippocampus and a dysregulated dopaminergic system. Conditional mutant animals show adult onset of schizophrenia-like behaviors and molecular, cellular, and physiological endophenotypes as previously described from postmortem brain studies of patients with schizophrenia. Our findings show that dopamine D2 receptor expression on parvalbumin interneurons is required to modulate and limit pyramidal neuron activity, which may prevent the dysregulation of the dopaminergic system.


Assuntos
Antipsicóticos/farmacologia , Resistência a Medicamentos , Interneurônios/metabolismo , Parvalbuminas/metabolismo , Receptores de Dopamina D2/fisiologia , Esquizofrenia/etiologia , Animais , Masculino , Camundongos , Camundongos Knockout , Parvalbuminas/genética , Fenótipo , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo , Transmissão Sináptica
7.
Toxicol Appl Pharmacol ; 330: 74-83, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28705594

RESUMO

Safety concerns for fetus development of zidovudine (AZT) administration as prophylaxis of vertical transmission of HIV persist. We evaluated the participation of the ATP-binding cassette efflux transporter ABCG2 in the penetration of AZT into the fetal brain and the relevance for drug safety. Oral daily doses of AZT (60mg/kg body weight) or its vehicle were administered between post gestational days 11 (E11) and 20 (E20) to Sprague-Dawley pregnant rats. At E21, animals received an intravenous bolus of 60mg AZT/kg body weight in the presence or absence of the ABCG2 inhibitor gefitinib (20mg/kg body weight, ip) and AZT in maternal plasma and fetal brain were measured by HPLC-UV. ABCG2 protein expression in placenta and fetal brain, as well as mitochondrial function and ultrastructure in fetal brain were also analyzed. In utero chronic exposure to AZT markedly induced ABCG2 expression in placenta and fetal brain whereas did not significantly alter mitochondrial functionality in the fetal brain. The area-under-the-concentration-time-curve of AZT significantly decreased in fetal brains isolated from AZT-exposed fetuses compared to control group, but this effect was abolished by ABCG2 inhibition. Our results suggest that the absence of mitochondrial toxicity in the fetal brain after chronic in utero administration of AZT could be attributed to its low accumulation in the tissue caused, at least in part, by ABCG2 overexpression. We propose that any interference with ABCG2 activity due to genetic, pathological or iatrogenic factors would increase the amount of AZT reaching the fetal brain, which could increase the risk of toxicity of this drug on the tissue.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/biossíntese , Fármacos Anti-HIV/farmacocinética , Encéfalo/metabolismo , Inibidores da Transcriptase Reversa/farmacocinética , Zidovudina/farmacocinética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Fármacos Anti-HIV/farmacologia , Disponibilidade Biológica , Encéfalo/efeitos dos fármacos , Feminino , Feto/efeitos dos fármacos , Feto/metabolismo , Gefitinibe , Peroxidação de Lipídeos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Gravidez , Quinazolinas/farmacologia , Ratos , Ratos Sprague-Dawley , Inibidores da Transcriptase Reversa/farmacologia , Zidovudina/farmacologia
8.
J Endocrinol ; 232(3): 535-546, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28096433

RESUMO

Female transgenic mice that overexpress the human chorionic gonadotrophin ß subunit (hCGß+) develop prolactinomas, whereas hCGß+ males do not. The high levels of circulating hCG induce massive luteinization in the ovary of hCGß+ females, and progesterone becomes the primary steroid hormone produced, but estradiol remains at physiological level. The involvement of high levels of progesterone in lactotroph proliferation is not clearly understood; hence, the pathogenesis of prolactinomas in hCGß+ females remains unclear. TGFß1 is an inhibitor of lactotroph function, and the reduced TGFß1 activity found in prolactinomas has been proposed to be involved in tumor development. The aim of the present work was to study the role of TGFß1 in the gender-specific development of prolactinomas in hCGß+ mice. We compared the expression of different components of the pituitary TGFß1 system in males and females in this model. We found reduced TGFß1 levels, reduced expression of TGFß1 target genes, TGFß1 receptors, Ltbp1, Smad4 and Smad7 in hCGß+ female pituitaries. However, no differences were found between the transgenic and wild-type male pituitaries. We postulate that decreased pituitary TGFß1 activity in hCGß+ females is involved in the development of prolactinomas. In fact, we demonstrated that an in vivo treatment carried out for increasing pituitary TGFß1 activity, was successful in reducing the prolactinoma development, and the hyperprolactinemia in hCGß+ females. Moreover, the stronger TGFß1 system found in males could protect them from excessive lactotroph proliferation. Sex differences in the regulation of the pituitary TGFß1 system could explain gender differences in the incidence of prolactinoma.


Assuntos
Gonadotropina Coriônica Humana Subunidade beta/metabolismo , Hipófise/metabolismo , Neoplasias Hipofisárias/metabolismo , Prolactinoma/metabolismo , Caracteres Sexuais , Fator de Crescimento Transformador beta1/metabolismo , Animais , Gonadotropina Coriônica Humana Subunidade beta/genética , Feminino , Proteínas de Ligação a TGF-beta Latente/genética , Proteínas de Ligação a TGF-beta Latente/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Hipófise/patologia , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/patologia , Prolactinoma/genética , Prolactinoma/patologia , Proteína Smad4/genética , Proteína Smad4/metabolismo , Proteína Smad7/genética , Proteína Smad7/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA