Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ArXiv ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39184536

RESUMO

When predicting physical phenomena through simulation, quantification of the total uncertainty due to multiple sources is as crucial as making sure the underlying numerical model is accurate. Possible sources include irreducible aleatoric uncertainty due to noise in the data, epistemic uncertainty induced by insufficient data or inadequate parameterization, and model-form uncertainty related to the use of misspecified model equations. In addition, recently proposed approaches provide flexible ways to combine information from data with full or partial satisfaction of equations that typically encode physical principles. Physics-based regularization interacts in nontrivial ways with aleatoric, epistemic and model-form uncertainty and their combination, and a better understanding of this interaction is needed to improve the predictive performance of physics-informed digital twins that operate under real conditions. To better understand this interaction, with a specific focus on biological and physiological models, this study investigates the decomposition of total uncertainty in the estimation of states and parameters of a differential system simulated with MC X-TFC, a new physics-informed approach for uncertainty quantification based on random projections and Monte-Carlo sampling. After an introductory comparison between approaches for physics-informed estimation, MC X-TFC is applied to a six-compartment stiff ODE system, the CVSim-6 model, developed in the context of human physiology. The system is first analyzed by progressively removing data while estimating an increasing number of parameters, and subsequently by investigating total uncertainty under model-form misspecification of non-linear resistance in the pulmonary compartment. In particular, we focus on the interaction between the formulation of the discrepancy term and quantification of model-form uncertainty, and show how additional physics can help in the estimation process. The method demonstrates robustness and efficiency in estimating unknown states and parameters, even with limited, sparse, and noisy data. It also offers great flexibility in integrating data with physics for improved estimation, even in cases of model misspecification.

2.
PLoS Comput Biol ; 20(3): e1011916, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38470870

RESUMO

Discovering mathematical equations that govern physical and biological systems from observed data is a fundamental challenge in scientific research. We present a new physics-informed framework for parameter estimation and missing physics identification (gray-box) in the field of Systems Biology. The proposed framework-named AI-Aristotle-combines the eXtreme Theory of Functional Connections (X-TFC) domain-decomposition and Physics-Informed Neural Networks (PINNs) with symbolic regression (SR) techniques for parameter discovery and gray-box identification. We test the accuracy, speed, flexibility, and robustness of AI-Aristotle based on two benchmark problems in Systems Biology: a pharmacokinetics drug absorption model and an ultradian endocrine model for glucose-insulin interactions. We compare the two machine learning methods (X-TFC and PINNs), and moreover, we employ two different symbolic regression techniques to cross-verify our results. To test the performance of AI-Aristotle, we use sparse synthetic data perturbed by uniformly distributed noise. More broadly, our work provides insights into the accuracy, cost, scalability, and robustness of integrating neural networks with symbolic regressors, offering a comprehensive guide for researchers tackling gray-box identification challenges in complex dynamical systems in biomedicine and beyond.


Assuntos
Benchmarking , Aprendizado de Máquina , Redes Neurais de Computação , Física , Biologia de Sistemas
3.
Chaos ; 32(6): 063107, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35778155

RESUMO

This work presents a recently developed approach based on physics-informed neural networks (PINNs) for the solution of initial value problems (IVPs), focusing on stiff chemical kinetic problems with governing equations of stiff ordinary differential equations (ODEs). The framework developed by the authors combines PINNs with the theory of functional connections and extreme learning machines in the so-called extreme theory of functional connections (X-TFC). While regular PINN methodologies appear to fail in solving stiff systems of ODEs easily, we show how our method, with a single-layer neural network (NN) is efficient and robust to solve such challenging problems without using artifacts to reduce the stiffness of problems. The accuracy of X-TFC is tested against several state-of-the-art methods, showing its performance both in terms of computational time and accuracy. A rigorous upper bound on the generalization error of X-TFC frameworks in learning the solutions of IVPs for ODEs is provided here for the first time. A significant advantage of this framework is its flexibility to adapt to various problems with minimal changes in coding. Also, once the NN is trained, it gives us an analytical representation of the solution at any desired instant in time outside the initial discretization. Learning stiff ODEs opens up possibilities of using X-TFC in applications with large time ranges, such as chemical dynamics in energy conversion, nuclear dynamics systems, life sciences, and environmental engineering.


Assuntos
Redes Neurais de Computação , Física , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA