Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
J Am Chem Soc ; 146(19): 13113-13125, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38700843

RESUMO

Defect engineering in metal-organic frameworks (MOFs) has gained worldwide research traction, as it offers tools to tune the properties of MOFs. Herein, we report a novel 2-fold interpenetrated Bi-based MOF made of a tritopic flexible organic linker, followed by missing-linker defect engineering. This procedure creates a gradually augmented micro- and mesoporosity in the parent (originally nonporous) network. The resulting MOFs can tolerate a remarkable extent of linker vacancy (with absence of up to 60% of linkers per Bi node) created by altering the crystal-growth rate as a function of synthesis temperature and duration. Owing to the enhanced porosity and availability of the uncoordinated Lewis acidic Bi sites, the defect-engineered MOFs manifested improved surface areas, augmented CO2 and water vapor uptake, and catalytic activity. Parallel to this, the impact of defect engineering on the optoelectronic properties of these MOFs has also been studied, offering avenues for new applications.

2.
Biomacromolecules ; 25(3): 1448-1467, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38412382

RESUMO

Despite all recent progresses in nerve tissue engineering, critical-sized nerve defects are still extremely challenging to repair. Therefore, this study targets the bridging of critical nerve defects and promoting an oriented neuronal outgrowth by engineering innovative nerve guidance conduits (NGCs) synergistically possessing exclusive topographical, chemical, and mechanical cues. To do so, a mechanically adequate mixture of polycaprolactone (PCL) and polylactic-co-glycolic acid (PLGA) was first carefully selected as base material to electrospin nanofibrous NGCs simulating the extracellular matrix. The electrospinning process was performed using a newly designed 2-pole air gap collector that leads to a one-step deposition of seamless NGCs having a bilayered architecture with an inner wall composed of highly aligned fibers and an outer wall consisting of randomly oriented fibers. This architecture is envisaged to afford guidance cues for the extension of long neurites on the underlying inner fiber alignment and to concurrently provide a sufficient nutrient supply through the pores of the outer random fibers. The surface chemistry of the NGCs was then modified making use of a hollow cathode discharge (HCD) plasma reactor purposely designed to allow an effective penetration of the reactive species into the NGCs to eventually treat their inner wall. X-ray photoelectron spectroscopy (XPS) results have indeed revealed a successful O2 plasma modification of the inner wall that exhibited a significantly increased oxygen content (24 → 28%), which led to an enhanced surface wettability. The treatment increased the surface nanoroughness of the fibers forming the NGCs as a result of an etching effect. This effect reduced the ultimate tensile strength of the NGCs while preserving their high flexibility. Finally, pheochromocytoma (PC12) cells were cultured on the NGCs to monitor their ability to extend neurites which is the base of a good nerve regeneration. In addition to remarkably improved cell adhesion and proliferation on the plasma-treated NGCs, an outstanding neural differentiation occurred. In fact, PC12 cells seeded on the treated samples extended numerous long neurites eventually establishing a neural network-like morphology with an overall neurite direction following the alignment of the underlying fibers. Overall, PCL/PLGA NGCs electrospun using the 2-pole air gap collector and O2 plasma-treated using an HCD reactor are promising candidates toward a full repair of critical nerve damage.


Assuntos
Neuritos , Alicerces Teciduais , Ratos , Animais , Alicerces Teciduais/química , Neuritos/fisiologia , Engenharia Tecidual/métodos , Regeneração Nervosa , Crescimento Neuronal
3.
J Biomed Mater Res A ; 112(2): 210-230, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37706337

RESUMO

Bone marrow-derived mesenchymal stromal cells (BMSCs) are extensively being utilized for cartilage regeneration owing to their excellent differentiation potential and availability. However, controlled differentiation of BMSCs towards cartilaginous phenotypes to heal full-thickness cartilage defects remains challenging. This study investigates how different surface properties induced by either coating deposition or biomolecules immobilization onto nanofibers (NFs) could affect BMSCs chondro-inductive behavior. Accordingly, electrospun poly(ε-caprolactone) (PCL) NFs were exposed to two surface modification strategies based on medium-pressure plasma technology. The first strategy is plasma polymerization, in which cyclopropylamine (CPA) or acrylic acid (AcAc) monomers were plasma polymerized to obtain amine- or carboxylic acid-rich NFs, respectively. The second strategy uses a combination of CPA plasma polymerization and a post-chemical technique to immobilize chondroitin sulfate (CS) onto the NFs. These modifications could affect surface roughness, hydrophilicity, and chemical composition while preserving the NFs' nano-morphology. The results of long-term BMSCs culture in both basic and chondrogenic media proved that the surface modifications modulated BMSCs chondrogenic differentiation. Indeed, the incorporation of polar groups by different modification strategies had a positive impact on the cell proliferation rate, production of the glycosaminoglycan matrix, and expression of extracellular matrix proteins (collagen I and collagen II). The chondro-inductive behavior of the samples was highly dependent on the nature of the introduced polar functional groups. Among all samples, carboxylic acid-rich NFs promoted chondrogenesis by higher expression of aggrecan, Sox9, and collagen II with downregulation of hypertrophic markers. Hence, this approach showed an intrinsic potential to have a non-hypertrophic chondrogenic cell phenotype.


Assuntos
Células-Tronco Mesenquimais , Nanofibras , Humanos , Condrogênese , Diferenciação Celular , Colágeno/química , Ácidos Carboxílicos , Células Cultivadas
4.
Bioconjug Chem ; 34(12): 2311-2318, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38055023

RESUMO

Surface functionalization with biological macromolecules is an important task for the development of sensor materials, whereby the interaction with other biological materials should be suppressed. In this work, we developed a novel multifunctional poly(2-ethyl-2-oxazoline)-dithiolane conjugate as a versatile linker for gold surface immobilization of amine-containing biomolecules, containing poly(2-ethyl-2-oxazoline) as antifouling polymer, dithiolane for surface immobilization, and activated esters for protein conjugation. First, a well-defined carboxylic acid containing copoly(2-ethyl-2-oxazoline) was synthesized by cationic ring-opening copolymerization of 2-ethyl-2-oxazoline with a methyl ester-containing 2-oxazoline monomer, followed by postpolymerization modifications. The side-chain carboxylic groups were then converted to amine-reactive pentafluorophenyl (PFP) ester groups. Part of the PFP groups was used for the attachment of the dithiolane moiety, which can efficiently bind to gold surfaces. The final copolymer contained 1.4 mol% of dithiolane groups and 4.5 mol% of PFP groups. The copolymer structure was confirmed by several analytical techniques, including NMR spectroscopy and size-exclusion chromatography. The kinetics of the PFP ester aminolysis and hydrolysis demonstrated significantly faster amidation compared to hydrolysis, which is essential for subsequent protein conjugation. Successful coating of gold surfaces with the polymer was confirmed by spectroscopic ellipsometry, showing a polymer brush thickness of 4.77 nm. Subsequent modification of the coated surfaces was achieved using bovine serum albumin as a model protein. This study introduces a novel reactive polymer linker for gold surface functionalization and offers a versatile polymer platform for various applications including biosensing and surface functionalization.


Assuntos
Ésteres , Polímeros , Ésteres/química , Polímeros/química , Poliaminas/química
5.
Nanomaterials (Basel) ; 13(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37887925

RESUMO

Currently, there is considerable interest in seeking an environmentally friendly technique that is neither thermally nor organic solvent-dependent for producing advanced polymer films for food-packaging applications. Among different approaches, plasma polymerization is a promising method that can deposit biodegradable coatings on top of polymer films. In this study, an atmospheric-pressure aerosol-assisted plasma deposition method was employed to develop a poly(ethylene glycol) (PEG)-like coating, which can act as a potential matrix for antimicrobial agents, by envisioning controlled-release food-packaging applications. Different plasma operating parameters, including the input power, monomer flow rate, and gap between the edge of the plasma head and substrate, were optimized to produce a PEG-like coating with a desirable water stability level and that can be biodegradable. The findings revealed that increased distance between the plasma head and substrate intensified gas-phase nucleation and diluted the active plasma species, which in turn led to the formation of a non-conformal rough coating. Conversely, at short plasma-substrate distances, smooth conformal coatings were obtained. Furthermore, at low input powers (<250 W), the chemical structure of the precursor was mostly preserved with a high retention of C-O functional groups due to limited monomer fragmentation. At the same time, these coatings exhibit low stability in water, which could be attributed to their low cross-linking degree. Increasing the power to 350 W resulted in the loss of the PEG-like chemical structure, which is due to the enhanced monomer fragmentation at high power. Nevertheless, owing to the enhanced cross-linking degree, these coatings were more stable in water. Finally, it could be concluded that a moderate input power (250-300 W) should be applied to obtain an acceptable tradeoff between the coating stability and PEG resemblance.

6.
Angew Chem Int Ed Engl ; 62(47): e202313836, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37806967

RESUMO

Electrochemical two-electron water oxidation (2e WOR) is gaining surging research traction for sustainable hydrogen peroxide production. However, the strong oxidizing environment and thermodynamically competitive side-reaction (4e WOR) posit as thresholds for the 2e WOR. We herein report a custom-crafted covalent triazine network possessing strong oxidizing properties as a proof-of-concept metal-free functional organic network electrocatalyst for catalyzing 2e WOR. As the first-of-its-kind, the material shows a maximum of 89.9 % Faradaic Efficiency and 1428 µmol/h/cm2 H2 O2 production rate at 3.0 V bias potential (vs reversible hydrogen electrode, RHE), which are either better or comparable to the state-of-the-art electrocatalysts. We have experimentally confirmed a stepwise 2e WOR mechanism which was further computationally endorsed by density functional theory studies.

7.
Biomater Res ; 27(1): 104, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853495

RESUMO

BACKGROUND: Long-term drug evaluation heavily relies upon rodent models. Drug discovery methods to reduce animal models in oncology may include three-dimensional (3D) cellular systems that take into account tumor microenvironment (TME) cell types and biomechanical properties. METHODS: In this study we reconstructed a 3D tumor using an elastic polymer (acrylate-endcapped urethane-based poly(ethylene glycol) (AUPPEG)) with clinical relevant stiffness. Single cell suspensions from low-grade serous ovarian cancer (LGSOC) patient-derived early passage cultures of cancer cells and cancer-associated fibroblasts (CAF) embedded in a collagen gel were introduced to the AUPPEG scaffold. After self-organization in to a 3D tumor, this model was evaluated by a long-term (> 40 days) exposure to a drug combination of MEK and HSP90 inhibitors. The drug-response results from this long-term in vitro model are compared with drug responses in an orthotopic LGSOC xenograft mouse model. RESULTS: The in vitro 3D scaffold LGSOC model mimics the growth ratio and spatial organization of the LGSOC. The AUPPEG scaffold approach allows to test new targeted treatments and monitor long-term drug responses. The results correlate with those of the orthotopic LGSOC xenograft mouse model. CONCLUSIONS: The mechanically-tunable scaffolds colonized by a three-dimensional LGSOC allow long-term drug evaluation and can be considered as a valid alternative to reduce, replace and refine animal models in drug discovery.

8.
J Agric Food Chem ; 71(38): 14057-14067, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37723886

RESUMO

Nonthermal plasma is a mild processing technology for food preservation. Its impact on lipid oxidation was investigated in this study. Stripped methylesters were considered as a basic lipid model system and were treated by a multihollow surface dielectric barrier discharge. In dry air plasma, O3, ·NO2, ·NO3, and 1O2 were identified as the main reactive species reaching the sample surface. Treatment time was the most prominent parameter affecting lipid oxidation, followed by the (specific) power input and the plasma-sample distance. In humid air plasma, less O3 was detected, but ONOOH and O2NOOH were generated and presumed to play a role in lipid oxidation. Ozone mainly resulted in the formation of carbonyl substances via the trioxolane pathway, while reactive nitrogen species (i.e., ·NO2, ·NO3, ONOOH, and O2NOOH) led to the formation of hydroperoxides. The impact of short-living radicals (e.g., ·O, ·N, ·OH, and ·OOH) was restricted in general, since they dissipated too fast to reach the sample.·NO, HNO3, H2O2, and UV radiation did not induce lipid oxidation. All the reactive species identified in this study were associated with the presence of O2 in the input gas.


Assuntos
Peróxido de Hidrogênio , Dióxido de Nitrogênio , Metabolismo dos Lipídeos , Plasma , Lipídeos
9.
Nanomaterials (Basel) ; 13(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37570520

RESUMO

Cu (10 wt%) materials on silica nanotubes were prepared via two different synthetic approaches, co-synthesis and wetness impregnation on preformed SiO2 nanotubes, both as dried or calcined materials, with Cu(NO3)2.5H2O as a material precursor. The obtained silica and the Cu samples, after calcination at 550 °C for 5 h, were characterized by several techniques, such as TEM, N2 physisorption, XRD, Raman, H2-TPR and XPS, and tested for toluene oxidation in the 20-450 °C temperature range. A reference sample, Cu(10 wt%) over commercial silica, was also prepared. The copper-based silica nanotubes exhibited the best performances with respect to toluene oxidation. The Cu-based catalyst using dried silica nanotubes has the lowest T50 (306 °C), the temperature required for 50% toluene conversion, compared with a T50 of 345 °C obtained for the reference catalyst. The excellent catalytic properties of this catalyst were ascribed to the presence of easy copper (II) species finely dispersed (crystallite size of 13 nm) on the surface of silica nanotubes. The present data underlined the impact of the synthetic method on the catalyst properties and oxidation activity.

10.
Polymers (Basel) ; 15(14)2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37514368

RESUMO

Polymeric surfaces have been increasingly plasma-activated to adopt adequate chemistries, enabling their use in different applications. An unavoidable surface oxygen insertion upon exposure to non-oxygen-containing plasmas was always observed and mainly attributed to in-plasma oxidation stemming from O2 impurities in plasma reactors. Therefore, this work investigates exclusive in-plasma oxidation processes occurring on polyethylene surfaces by purposely admixing different O2 concentrations to medium-pressure Ar and N2 dielectric barrier discharges (base pressure: 10-7 kPa). Hence, distinctive optical emission spectroscopy and in-situ X-ray photoelectron spectroscopy (XPS) data were carefully correlated. Pure N2 discharge triggered an unprecedented surface incorporation of large nitrogen (29%) and low oxygen (3%) amounts. A steep rise in the O-content (10%) at the expense of nitrogen (15%) was detected upon the addition of 6.2 × 10-3% of O2 to the feed gas. When the added O2 exceeded 1%, the N content was completely quenched. Around 8% of surface oxygen was detected in Ar plasma due to high-energy Ar metastables creating more surface radicals that reacted with O2 impurities. When adding only 6.2 × 10-3% of O2 to Ar, the surface O content considerably increased to 12%. Overall, in-plasma oxidation caused by O2 impurities can strikingly change the surface chemistry of N2 and Ar plasma-treated polymers.

11.
ACS Appl Mater Interfaces ; 15(29): 35092-35106, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37462114

RESUMO

Covalent organic frameworks (COFs) are emerging as a new class of photoactive organic semiconductors, which possess crystalline ordered structures and high surface areas. COFs can be tailor-made toward specific (photocatalytic) applications, and the size and position of their band gaps can be tuned by the choice of building blocks and linkages. However, many types of building blocks are still unexplored as photocatalytic moieties and the scope of reactions photocatalyzed by COFs remains quite limited. In this work, we report the synthesis and application of two bipyridine- or phenylpyridine-based COFs: TpBpyCOF and TpPpyCOF. Due to their good photocatalytic properties, both materials were applied as metal-free photocatalysts for the tandem aerobic oxidation/Povarov cyclization and α-oxidation of N-aryl glycine derivatives, with the bipyridine-based TpBpyCOF exhibiting the highest activity. By expanding the range of reactions that can be photocatalyzed by COFs, this work paves the way toward the more widespread application of COFs as metal-free heterogeneous photocatalysts as a convenient alternative for commonly used homogeneous (metal-based) photocatalysts.

12.
ACS Biomater Sci Eng ; 9(5): 2392-2407, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37129346

RESUMO

Cold plasmas have found their application in a wide range of biomedical fields by virtue of their high chemical reactivity. In the past decades, many attempts have been made to use cold plasmas in wound healing, and within this field, many studies have focused on plasma-induced cell proliferation mechanisms. In this work, one step further has been taken to demonstrate the advanced role of plasma in wound healing. To this end, the simultaneous ability of plasma to induce cell proliferation and permeabilize treated cells has been examined in the current study. The driving force was to advance the wound healing effect of plasma with drug delivery. On this subject, we demonstrate in vitro the healing effect of Ar, Ar+N2 plasma, and their aerosol counterparts. A systematic study has been carried out to study the role of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in cell adhesion, signaling, differentiation, and proliferation. An additional investigation was also performed to study the permeabilization of cells and the delivery of the modeled drug carrier fluorescein isothiocyanate (FITC) labeled dextran into cells upon plasma treatment. Short 35 s plasma treatments were found to promote fibroblast adhesion, migration, signaling, proliferation, and differentiation by means of reactive oxygen and nitrogen species (RONS) created by plasma and deposited into the cell environment. The impact of the plasma downstream products NO2- and NO3- on the expressions of the focal adhesion's genes, syndecans, and collagens was observed to be prominent. On the other hand, the differentiation of fibroblasts to myofibroblasts was mainly initiated by ROS produced by the plasma. In addition, the ability of plasma to locally permeabilize fibroblast cells was demonstrated. During proliferative cell treatment, plasma can simultaneously induce cell membrane permeabilization (d ∼ 7.3 nm) by the species OH and H2O2. The choice for a plasma or a plasma-aerosol configuration thus allows the possibility to change the spatial chemistry of drug delivery molecules and thus to locally deliver drugs. Accordingly, this study offers a pivotal step toward plasma-assisted wound healing advanced by drug delivery.


Assuntos
Peróxido de Hidrogênio , Cicatrização , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Colágeno/farmacologia , Espécies Reativas de Nitrogênio/farmacologia , Aerossóis/farmacologia
13.
J Hazard Mater ; 451: 131100, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-36893595

RESUMO

Plasma-catalysis has been recognized as a promising method to decompose hazardous volatile organic compounds (VOCs) since many years ago. To understand the fundamental mechanisms of VOCs decomposition by plasma-catalysis systems, both experimental and modeling studies have been extensively carried out. However, literature on summarized modeling methodologies is still scarce. In this short review, we therefore present a comprehensive overview of modeling methodologies ranging from microscopic to macroscopic modeling in plasma-catalysis for VOCs decomposition. The modeling methods of VOCs decomposition by plasma and plasma-catalysis are classified and summarized. The roles of plasma and plasma-catalyst interactions in VOCs decomposition are also critically examined. Taking the current advances in understanding the decomposition mechanisms of VOCs into account, we finally provide our perspectives for future research directions. This short review aims to stimulate the further development of plasma-catalysis for VOCs decomposition in both fundamental studies and practical applications with advanced modeling methods.

14.
Foods ; 12(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36673477

RESUMO

The non-thermal plasma (NTP) treatment of food products as an alternative for thermal processing has been investigated over the last few years. This quasi-neutral gas contains a wide variety of reactive oxygen and nitrogen species (RONS), which could be lethal for bacterial cells present in the product. However, apart from only targeting bacteria, the RONS will also interact with components present in the food matrix. Therefore, these food components will protect the microorganisms, and the NTP treatment efficiency will decrease. This effect was investigated by supplementing a plain agar medium with various representative food matrix components. After inoculation with Escherichia coli O157:H7 (STEC) MB3885, the plates were treated for 30 s by a multi-hollow surface dielectric barrier discharge (MSDBD) generated in either dry air or air at 75% humidity, at constant power (25.7 ± 1.7 W). Subsequently, the survival of the cells was quantified. It has been found that the addition of casein hydrolysate (7.1 ± 0.2 m%), starch (2.0 m%), or soybean oil (4.6 m%) decreased the inactivation effect significantly. Food products containing these biomolecules might therefore need a more severe NTP treatment. Additionally, with increasing humidity of the plasma input gas, ozone levels decreased, and the bactericidal effect was generally less pronounced.

15.
Trends Biotechnol ; 41(1): 63-76, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35863949

RESUMO

Antibacterial coatings are regarded as a necessary tool to prevent implant-related infections. Substrate-independent and widely applicable coating techniques are gaining significant interest to synthesize different types of antibacterial films, which can be relevant from a fundamental and application-oriented perspective. Plasma polymer- and polydopamine-based antibacterial coatings represent the most widely studied and versatile approaches among these coating techniques. Both single- and dual-functional antibacterial coatings can be fabricated with these approaches and a variety of dual-functional antibacterial coating strategies can still be explored in future work. These coatings can potentially be used for a wide range of different implants (material, shape, and size). However, for most implants, significantly more fundamental knowledge needs to be gained before these coatings can find real-life use.


Assuntos
Antibacterianos , Materiais Revestidos Biocompatíveis , Antibacterianos/farmacologia , Próteses e Implantes
16.
Biomater Adv ; 143: 213183, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36371971

RESUMO

Despite tissue engineering advances, current nerve guidance conduits (NGCs) are still failing in repairing critical-sized defects. This study aims, therefore, at tackling large nerve gaps (2 cm) by designing NGCs possessing refined physicochemical properties enhancing the activity of Schwann cells (SCs) that support nerve regeneration over long distances. As such, a combinatorial strategy adopting novel plasma-induced surface chemistry and architectural heterogeneity was considered. A mechanically suitable copolymer (Polyactive®) was electrospun to produce nanofibrous NGCs mimicking the extracellular matrix. An innovative seamless double-layered architecture consisting of an inner wall comprised of bundles of aligned fibers with intercalated random fibers and an outer wall fully composed of random fibers was conceived to synergistically provide cell guidance cues and sufficient nutrient inflow. NGCs were subjected to argon plasma treatments using a dielectric barrier discharge (DBD) and a plasma jet (PJ). Surface chemical changes were examined by advanced X-ray photoelectron spectroscopy (XPS) micro-mappings. The DBD homogeneously increased the surface oxygen content from 17 % to 28 % on the inner wall. The PJ created a gradient chemistry throughout the inner wall with an oxygen content gradually increasing from 21 % to 30 %. In vitro studies revealed enhanced primary SC adhesion, elongation and proliferation on plasma-treated NGCs. A cell gradient was observed on the PJ-treated NGCs thus underlining the favorable oxygen gradient in promoting cell chemotaxis. A gradual change from circular to highly elongated SC morphologies mimicking the bands of Büngner was visualized along the gradient. Overall, plasma-treated NGCs are promising candidates paving the way towards critical nerve gap repair.


Assuntos
Regeneração Tecidual Guiada , Regeneração Tecidual Guiada/métodos , Alicerces Teciduais/química , Regeneração Nervosa/fisiologia , Engenharia Tecidual/métodos , Polímeros/química , Oxigênio
17.
RSC Adv ; 12(22): 14246-14259, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35558835

RESUMO

The simultaneous presence of hazardous chemicals and pathogenic microorganisms in wastewater is tremendously endangering the environment and human health. Therefore, developing a mitigation strategy for adequately degrading toxic compounds and inactivating/killing microorganisms is urgently needed to protect ecosystems. In this paper, the synergetic effects of the photocatalytic activity of TiO2 and Cu-TiO2 nanoparticles (NPs) and the oxidation processes of non-thermal atmospheric pressure plasma (NTAPP) were comprehensively investigated for both the inactivation/killing of common water contaminating bacteria (Escherichia coli (E. coli)) and the degradation of direct textile wastewater (DTW). The photocatalytic NPs were synthesized using the hydrothermal method and further characterized employing field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), ultraviolet-visible diffuse reflection spectroscopy (UV-Vis DRS) and photoluminescence (PL). Results revealed the predominant presence of the typical anatase phase for both the flower-like TiO2 and the multipod-like Cu-TiO2 structures. UV-Vis DRS and PL analyses showed that the addition of Cu dopants reduced the bandgap and increased oxygen defect vacancies of TiO2. The inactivation of E. coli in suspension and degradation of DTW were then examined upon treating the aqueous media with various plasma alone and plasma/NPs conditions (Ar plasma, Ar + O2 plasma and Ar + N2 plasma, Ar plasma + TiO2 NPs and Ar plasma + Cu-TiO2 NPs). Primary and secondary excited species such as OH˙, O, H and N2* generated in plasma during the processes were recognized by in situ optical emission spectrometry (OES) measurements. Several other spectroscopic analyses were further employed to quantify some reactive oxygen species (ROS) such as OH, H2O2 and O3 generated during the processes. Moreover, the changes in the pH and electrical conductivity (EC) of the solutions were also assessed. The inactivation of bacteria was examined by the colony-forming unit (CFU) method after plating the treated suspensions on agar, and the degradation of organic compounds in DTW was further validated by measuring the total organic carbon (TOC) removal efficiency. All results collectively revealed that the combinatorial plasma-photocatalysis strategy involving Cu-TiO2 NPs and argon plasma jet produced higher concentrations of ROS and proved to be a promising one-step wastewater treatment effectively killing microorganisms and degrading toxic organic compounds.

18.
Sci Total Environ ; 828: 154290, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35248631

RESUMO

It is urgent to control the emission of volatile organic compounds (VOCs) due to their harmful effects on the environment and human health. A hybrid system integrating non-thermal-plasma and catalysis is regarded as one of the most promising technologies for VOCs removal due to their high VOCs removal efficiency, product selectivity and energy efficiency. This review systematically documents the main findings and improvements of VOCs removal using plasma-catalysis technology in recent 10 years. To better understand the fundamental relation between different aspects of this research field, this review mainly addresses the catalyst development, key influential factors, generation of by-products and reaction mechanism of VOCs decomposition in the plasma-catalysis process. Also, a comparison of the performance in various VOCs removal processes is provided. Particular emphasis is given to the importance of the selected catalyst and the synergy of plasma and catalyst in the VOCs removal in the hybrid system, which can be used as a reference point for future studies in this field.


Assuntos
Compostos Orgânicos Voláteis , Catálise , Humanos
19.
ChemSusChem ; 15(10): e202102526, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35285575

RESUMO

Industrial ammonia production without CO2 emission and with low energy consumption is one of the technological grand challenges of this age. Current Haber-Bosch ammonia mass production processes work with a thermally activated iron catalyst needing high pressure. The need for large volumes of hydrogen gas and the continuous operation mode render electrification of Haber-Bosch plants difficult to achieve. Electrochemical solutions at low pressure and temperature are faced with the problematic inertness of the nitrogen molecule on electrodes. Direct reduction of N2 to ammonia is only possible with very reactive chemicals such as lithium metal, the regeneration of which is energy intensive. Here, the attractiveness of an oxidative route for N2 activation was presented. N2 conversion to NOx in a plasma reactor followed by reduction with H2 on a heterogeneous catalyst at low pressure could be an energy-efficient option for small-scale distributed ammonia production with renewable electricity and without intrinsic CO2 footprint.


Assuntos
Amônia , Nitrogênio , Amônia/química , Dióxido de Carbono , Catálise , Nitrogênio/química , Oxirredução
20.
ACS Appl Mater Interfaces ; 14(13): 15287-15297, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35322660

RESUMO

Chemoselective reduction of nitroarenes to arylamines is a core technology for the synthesis of numerous chemicals. The technology, however, relies on applying precious noble metal catalysts. We present our findings on the development of robust nanoporous covalent triazine frameworks (CTFs) as metal-free catalysts for the green chemoselective reduction of nitroarenes. The turnover frequency is found to be 43.03 h-1, exceeding activities of the heteroatom-doped carbon nanomaterials by a factor of 30. The X-ray photoelectron spectroscopy and control experiments provide further insights into the nature of active species for prompt catalysis. This report confirms the importance of quaternary 'N' and 'F' atom functionalities to create active hydrogen species via charge delocalization as a critical step in improving the catalytic activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA