Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Gut ; 68(10): 1872-1883, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30580251

RESUMO

OBJECTIVE: Acute-on-chronic liver failure (ACLF) is associated with dysfunctional circulating monocytes whereby patients become highly susceptible to bacterial infections. Here, we identify the pathways underlying monocyte dysfunction in ACLF and we investigate whether metabolic rewiring reinstates their phagocytic and inflammatory capacity. DESIGN: Following phenotypic characterisation, we performed RNA sequencing on CD14+CD16- monocytes from patients with ACLF and decompensated alcoholic cirrhosis. Additionally, an in vitro model mimicking ACLF patient-derived features was implemented to investigate the efficacy of metabolic regulators on monocyte function. RESULTS: Monocytes from patients with ACLF featured elevated frequencies of interleukin (IL)-10-producing cells, reduced human leucocyte antigen DR isotype (HLA-DR) expression and impaired phagocytic and oxidative burst capacity. Transcriptional profiling of isolated CD14+CD16- monocytes in ACLF revealed upregulation of an array of immunosuppressive parameters and compromised antibacterial and antigen presentation machinery. In contrast, monocytes in decompensated cirrhosis showed intact capacity to respond to inflammatory triggers. Culturing healthy monocytes in ACLF plasma mimicked the immunosuppressive characteristics observed in patients, inducing a blunted phagocytic response and metabolic program associated with a tolerant state. Metabolic rewiring of the cells using a pharmacological inhibitor of glutamine synthetase, partially restored the phagocytic and inflammatory capacity of in vitro generated- as well as ACLF patient-derived monocytes. Highlighting its biological relevance, the glutamine synthetase/glutaminase ratio of ACLF patient-derived monocytes positively correlated with disease severity scores. CONCLUSION: In ACLF, monocytes feature a distinct transcriptional profile, polarised towards an immunotolerant state and altered metabolism. We demonstrated that metabolic rewiring of ACLF monocytes partially revives their function, opening up new options for therapeutic targeting in these patients.


Assuntos
Insuficiência Hepática Crônica Agudizada/tratamento farmacológico , Infecções Bacterianas/tratamento farmacológico , Glutamato-Amônia Ligase/antagonistas & inibidores , Imunossupressores/uso terapêutico , Monócitos/enzimologia , Insuficiência Hepática Crônica Agudizada/imunologia , Insuficiência Hepática Crônica Agudizada/metabolismo , Adulto , Infecções Bacterianas/metabolismo , Infecções Bacterianas/patologia , Células Cultivadas , Citocinas/metabolismo , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Fagocitose , Estudos Retrospectivos
4.
Cancer Cell ; 33(1): 29-43.e7, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29249691

RESUMO

Genetic and functional studies underscore the central role of JAK/STAT signaling in myeloproliferative neoplasms (MPNs). However, the mechanisms that mediate transformation in MPNs are not fully delineated, and clinically utilized JAK inhibitors have limited ability to reduce disease burden or reverse myelofibrosis. Here we show that MPN progenitor cells are characterized by marked alterations in gene regulation through differential enhancer utilization, and identify nuclear factor κB (NF-κB) signaling as a key pathway activated in malignant and non-malignant cells in MPN. Inhibition of BET bromodomain proteins attenuated NF-κB signaling and reduced cytokine production in vivo. Most importantly, combined JAK/BET inhibition resulted in a marked reduction in the serum levels of inflammatory cytokines, reduced disease burden, and reversed bone marrow fibrosis in vivo.


Assuntos
Citocinas/metabolismo , Inflamação/tratamento farmacológico , Transtornos Mieloproliferativos/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Janus Quinase 2/genética , Camundongos Transgênicos , Mutação/efeitos dos fármacos , NF-kappa B/metabolismo , Neoplasias/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos
5.
Cell Stem Cell ; 21(4): 489-501.e7, 2017 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-28965767

RESUMO

JAK1 is a critical effector of pro-inflammatory cytokine signaling and plays important roles in immune function, while abnormal JAK1 activity has been linked to immunological and neoplastic diseases. Specific functions of JAK1 in the context of hematopoiesis, and specifically within hematopoietic stem cells (HSCs), have not clearly been delineated. Here, we show that conditional Jak1 loss in HSCs reduces their self-renewal and markedly alters lymphoid/myeloid differentiation in vivo. Jak1-deficient HSCs exhibit decreased competitiveness in vivo and are unable to rescue hematopoiesis in the setting of myelosuppression. They exhibit increased quiescence, an inability to enter the cell cycle in response to hematopoietic stress, and a marked reduction in cytokine sensing, including in response to type I interferons and IL-3. Moreover, Jak1 loss is not fully rescued by expression of a constitutively active Jak2 allele. Together, these data highlight an essential role for Jak1 in HSC homeostasis and stress responses.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Interleucina-3/metabolismo , Janus Quinase 1/metabolismo , Estresse Fisiológico , Alelos , Animais , Transplante de Medula Óssea , Ciclo Celular , Diferenciação Celular , Ativação Enzimática , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Terapia de Imunossupressão , Interferon Tipo I/metabolismo , Camundongos Knockout , Células Mieloides/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA