Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
FEMS Microbiol Ecol ; 99(12)2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37974054

RESUMO

Eating patterns, i.e. meal frequency and circadian timing of meals, are often modified in weight loss and metabolic healing strategies. However, in-depth research into the effects on the gut microbiome remains scarce, particularly across various colon regions and niches. We identified eating patterns to contribute in shaping the in vitro gut biomass production, metabolism, and microbial community compositions by subjecting four faecal microbiomes to a pattern that is standardized for a dynamic gut model (feeding at 09, 17, and 01 h), a typical Western (breakfast, lunch, and dinner at 09, 13, and 19 h, respectively), and a time-restricted pattern (single meal at 09 h). While eating patterns moderately affected the microbiome (2.4% and 1.8% significant variation in proportional and quantitative microbial compositions, respectively), significant changes were noted in the time-restricted pattern, including increased Bacteroides, Butyricicoccus, Dialister, and Faecalibacterium abundances. Sampling every 4 h revealed no significant circadian fluctuations in biomass production, microbial community compositions, or functionality. Longer fasting times favoured the growth of slower-growing species, such as Akkermansia, Dialister, and Parasutterella over faster-growers, such as Pseudomonas and Stenotrophomonas. Our findings illustrate the importance of recording and considering eating patterns as a gut microbiome determinant in in vivo and in vitro dietary intervention studies.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Comportamento Alimentar , Colo/microbiologia , Fezes/microbiologia
2.
Microbiome ; 11(1): 240, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37926855

RESUMO

BACKGROUND: Transit time is an important modulator of the human gut microbiome. The inability to modify transit time as the sole variable hampers mechanistic in vivo microbiome research. We singled out gut transit time in an unprecedented in vitro approach by subjecting faecal microbial communities from six individuals with either short, medium or long in vivo transit times, to three different colonic transit times of 21, 32 and 63 h in the validated human gut in vitro model, SHIME. RESULTS: Transit time was identified as the single most important driver of microbial cell concentrations (52%), metabolic activity (45%) and quantitative (24%) and proportional (22%) community composition. Deceleration of transit was characterised by a significant decrease of specific Bifidobacterium and Veillonella spp. and increase of specific fibre degrading bacteria and nutrient specialists, such as Bacteroides, Prevotella, Ruminococcus, Bilophila and Akkermansia spp. These microbial communities reached a higher population density and net carbohydrate fermentation, leading to an increased SCFA production at longer transit times. In contrast, the carbohydrate-to-biomass production efficiency was increased at shorter transits, particularly in well-adapted faecal microbiomes from donors with short in vivo transit. Said adaptation was also reflected in the carbohydrate-to-SCFA conversion efficiency which varied with donor, but also colon region and SCFA chain length. A long transit time promoted propionate production, whereas butyrate production and butyrate producers were selectively enriched in the proximal colon at medium transit time. CONCLUSION: Microbial growth rates and nutrient utilisation efficiency mediate the species-specific gut microbiota response to in vitro transit time variation, which is the main driver of in vitro microbial load, metabolism and community composition. Given the in vivo transit time variation within and between individuals, the personalisation of in vitro transit time based on in vivo data is required to accurately study intra- and inter-individual differences in gut microbiome structure, functionality and interactions with host and environmental modulators. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Butiratos/metabolismo , Nutrientes , Fermentação , Carboidratos , Fezes/microbiologia
3.
Food Res Int ; 172: 113215, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37689957

RESUMO

The prevalence of obesity is growing worldwide and has been extensively linked to gut microbiota dysbiosis. In addition to exercise and physical activity, fiber-rich foods may be a first-line prophylactic to manage obesity. This study investigated in vivo dietary intervention with high-amylose maize starch (HAMS) and starch-entrapped microspheres (MS) to treat high-fat diet induced metabolic disorder and gut microbiome dysbiosis in mice. MS more efficiently controlled body weight as well as adipose tissue mass compared to HAMS. Furthermore, MS significantly reduced blood glucose, insulin, lipid and pro-inflammatory cytokine levels compared to the high-fat diet, while the effects of HAMS were less pronounced. The MS-altered gut microbiota composition favoring Streptococcaceae, Bacilli, Firmicutes and unclassified Clostridiales was predicted to promote fatty acid, pantothenate and Coenzyme A biosynthesis. In line with this, elevated fecal short chain fatty acid (SCFA), in particular, propionate concentration was observed in MS-fed mice. Our study provides novel insights into the mechanistic action of MS on intestinal homeostasis, providing a basis for future dietary therapeutic applications.


Assuntos
Microbioma Gastrointestinal , Amido Resistente , Animais , Camundongos , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica/efeitos adversos , Disbiose , Microesferas , Obesidade , Amido/farmacologia , Amilose
4.
Biomolecules ; 12(11)2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36358990

RESUMO

Postbiotics are a new category of biotics that have the potential to confer health benefits but, unlike probiotics, do not require living cells to induce health effects and thus are not subject to the food safety requirements that apply to live microorganisms. Postbiotics are defined as a "preparation of inanimate microorganisms and/or their components that confers a health benefit on the host". Postbiotic components include short-chain fatty acids, exopolysaccharides, vitamins, teichoic acids, bacteriocins, enzymes and peptides in a non-purified inactivated cell preparation. While research into postbiotics is in its infancy, there is increasing evidence that postbiotics have the potential to modulate human health. Specifically, a number of postbiotics have been shown to improve gut health by strengthening the gut barrier, reducing inflammation and promoting antimicrobial activity against gut pathogens. Additionally, research is being conducted into the potential application of postbiotics to other areas of the body, including the skin, vagina and oral cavity. The purpose of this review is to set out the current research on postbiotics, demonstrate how postbiotics are currently used in commercial products and identify a number of knowledge gaps where further research is needed to identify the potential for future applications of postbiotics.


Assuntos
Microbioma Gastrointestinal , Probióticos , Humanos , Ácidos Graxos Voláteis , Vitaminas , Inflamação
5.
Nutrients ; 14(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36145178

RESUMO

The gut mucosal environment is key in host health; protecting against pathogens and providing a niche for beneficial bacteria, thereby facilitating a mutualistic balance between host and microbiome. Lack of dietary fiber results in erosion of the mucosal layer, suggested to be a result of increased mucus-degrading gut bacteria. This study aimed to use quantitative analyses to investigate the diet-induced imbalance of mucosal homeostasis. Seven days of fiber-deficiency affected intestinal anatomy and physiology, seen by reduced intestinal length and loss of the colonic crypt-structure. Moreover, the mucus layer was diminished, muc2 expression decreased, and impaired mucus secretion was detected by stable isotope probing. Quantitative microbiome profiling of the gut microbiota showed a diet-induced reduction in bacterial load and decreased diversity across the intestinal tract, including taxa with fiber-degrading and butyrate-producing capabilities. Most importantly, there was little change in the absolute abundance of known mucus-degrading bacteria, although, due to the general loss of taxa, relative abundance would erroneously indicate an increase in mucus degraders. These findings underscore the importance of using quantitative methods in microbiome research, suggesting erosion of the mucus layer during fiber deprivation is due to diminished mucus production rather than overgrowth of mucus degraders.


Assuntos
Fibras na Dieta , Muco , Bactérias , Butiratos/metabolismo , Fibras na Dieta/metabolismo , Homeostase , Mucosa Intestinal/metabolismo , Muco/metabolismo
6.
Sci Rep ; 12(1): 10475, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729185

RESUMO

Spondyloarthritis is a group of chronic inflammatory diseases that primarily affects axial or peripheral joints and is frequently associated with inflammation at non-articular sites. The disease is multifactorial, involving genetics, immunity and environmental factors, including the gut microbiota. In vivo, microbiome contributions are difficult to assess due to the multifactorial disease complexity. In a proof-of-concept approach, we therefore used a triple coculture model of immune-like, goblet and epithelial cells to investigate whether we could detect a differential impact from spondyloarthritis- vs. healthy-derived gut microbiota on host cell response. Despite their phylogenetic resemblance, flow cytometry-based phenotypic clustering revealed human-derived gut microbiota from healthy origin to cluster together and apart from spondyloarthritis donors. At host level, mucus production was higher upon exposure to healthy microbiota. Pro-inflammatory cytokine responses displayed more inter-individual variability in spondyloarthritis than in healthy donors. Interestingly, the high dominance in the initial sample of one patient of Prevotella, a genus previously linked to spondyloarthritis, resulted in the most differential host response upon 16 h host-microbe coincubation. While future research should further focus on inter-individual variability by using gut microbiota from a large cohort of patients, this study underscores the importance of the gut microbiota during the SpA disease course.


Assuntos
Microbioma Gastrointestinal , Espondilartrite , Técnicas de Cocultura , Humanos , Individualidade , Filogenia
7.
Front Microbiol ; 12: 653448, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956106

RESUMO

Inter-individual variability in the microbial gene complement encoding for carbohydrate-active enzymes (CAZymes) can profoundly regulate how the host interacts with diverse carbohydrate sources thereby influencing host health. CAZy-typing, characterizing the microbiota-associated CAZyme-coding genes within a host individual, can be a useful tool to predict carbohydrate pools that the host can metabolize, or identify which CAZyme families are underrepresented requiring supplementation via microbiota transplantation or probiotics. CAZy-typing, moreover, provides a novel framework to search for disease biomarkers. As a proof of concept, we used publicly available metagenomes (935) representing 310 type strain bacterial genomes to establish the link between disease status and CAZymes in the oral and gut microbial ecosystem. The abundance and distribution of 220 recovered CAZyme families in saliva and stool samples from patients with colorectal cancer, rheumatoid arthritis, and type 1 diabetes were compared with healthy subjects. Based on the multivariate discriminant analysis, the disease phenotype did not alter the CAZyme profile suggesting a functional conservation in carbohydrate metabolism in a disease state. When disease and healthy CAZyme profiles were contrasted in differential analysis, CAZyme markers that were underrepresented in type 1 diabetes (15), colorectal cancer (12), and rheumatoid arthritis (5) were identified. Of interest, are the glycosyltransferase which can catalyze the synthesis of glycoconjugates including lipopolysaccharides with the potential to trigger inflammation, a common feature in many diseases. Our analysis has also confirmed the expansive carbohydrate metabolism in the gut as evidenced by the overrepresentation of CAZyme families in the gut compared to the oral site. Nevertheless, each site exhibited specific CAZyme markers. Taken together, our analysis provides an insight into the CAZyme landscape in health and disease and has demonstrated the diversity in carbohydrate metabolism in host-microbiota which can be a sound basis for optimizing the selection of pre, pro, and syn-biotic candidate products.

8.
FASEB J ; 35(12): e21992, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34719821

RESUMO

The colonic epithelial barrier is vital to preserve gut and host health by maintaining the immune homeostasis between host and microbes. The mechanisms underlying beneficial or harmful host-microbe interactions are poorly understood and impossible to study in vivo given the limited accessibility and ethical constraints. Moreover, existing in vitro models lack the required cellular complexity for the routine, yet profound, analysis of the intricate interplay between different types of host and microbial cells. We developed and characterized a broadly applicable, easy-to-handle in vitro triple coculture model that combines chemically-induced macrophage-like, goblet and epithelial cells covered by a mucus layer, which can be coincubated with complex human-derived gut microbiota samples for 16 h. Comparison with a standard epithelial monolayer model revealed that triple cocultures produce thicker mucus layers, morphologically organize in a network and upon exposure to human-derived gut microbiota samples, respond via pro-inflammatory cytokine production. Both model systems, however, were not suffering from cytotoxic stress or different microbial loads, indicating that the obtained endpoints were caused by the imposed conditions. Addition of the probiotic Lactobacillus rhamnosus GG to assess its immunomodulating capacity in the triple coculture slightly suppressed pro-inflammatory cytokine responses, based on transcriptomic microarray analyses. TNF conditioning of the models prior to microbial exposure did not cause shifts in cytokines, suggesting a strong epithelial barrier in which TNF did not reach the basolateral side. To conclude, the triple coculture model is tolerable towards manipulations and allows to address mechanistic host-microbe research questions in a stable in vitro environment.


Assuntos
Técnicas de Cocultura/métodos , Colo/imunologia , Células Epiteliais/imunologia , Microbioma Gastrointestinal , Interações entre Hospedeiro e Microrganismos , Mucosa Intestinal/imunologia , Macrófagos/imunologia , Colo/citologia , Colo/metabolismo , Colo/microbiologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Lacticaseibacillus rhamnosus/fisiologia , Macrófagos/citologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Transcriptoma
9.
J Agric Food Chem ; 69(41): 12323-12332, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34623811

RESUMO

A slow dietary fiber fermentation rate is desirable to obtain a steady metabolite release and even distribution throughout the entire colon, ensuring to meet the energy needs in the distal colon. In this study, we prepared starch-entrapped microspheres with a variable chitosan-to-starch ratio by means of electrospraying and investigated the fermentability by human fecal microbiota in an in vitro batch system. Starch encapsulation reduced microbial gas production and the concentration of short-chain fatty acids. Butyrate production, in particular, gradually decreased with increasing chitosan proportions. Moreover, the starch and chitosan composites induced a synergistic effect on the gut microbiota composition. Roseburia, Lachnospiraceae, and Clostridiales were promoted by all of the microspheres, and the abundance of the aforementioned health-promoting taxa reached a maximum in chitosan/starch microspheres with a 1:6 (w/w) ratio. Our findings highlight the possible benefits of rationally designing functional foods targeting functional and taxonomic gut microbiota modulation.


Assuntos
Quitosana , Microbioma Gastrointestinal , Ácidos Graxos Voláteis , Fezes , Fermentação , Humanos , Microesferas , Amido/metabolismo
10.
Cell Host Microbe ; 29(10): 1558-1572.e6, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34480872

RESUMO

Premature infants are at substantial risk for suffering from perinatal white matter injury. Though the gut microbiota has been implicated in early-life development, a detailed understanding of the gut-microbiota-immune-brain axis in premature neonates is lacking. Here, we profiled the gut microbiota, immunological, and neurophysiological development of 60 extremely premature infants, which received standard hospital care including antibiotics and probiotics. We found that maturation of electrocortical activity is suppressed in infants with severe brain damage. This is accompanied by elevated γδ T cell levels and increased T cell secretion of vascular endothelial growth factor and reduced secretion of neuroprotectants. Notably, Klebsiella overgrowth in the gut is highly predictive for brain damage and is associated with a pro-inflammatory immunological tone. These results suggest that aberrant development of the gut-microbiota-immune-brain axis may drive or exacerbate brain injury in extremely premature neonates and represents a promising target for novel intervention strategies.


Assuntos
Lesões Encefálicas/imunologia , Lesões Encefálicas/microbiologia , Microbioma Gastrointestinal , Recém-Nascido Prematuro/crescimento & desenvolvimento , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Encéfalo/crescimento & desenvolvimento , Lesões Encefálicas/fisiopatologia , Feminino , Humanos , Sistema Imunitário/crescimento & desenvolvimento , Recém-Nascido , Recém-Nascido Prematuro/imunologia , Masculino , Linfócitos T/imunologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/imunologia
11.
Lancet Gastroenterol Hepatol ; 6(10): 784-792, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34358486

RESUMO

BACKGROUND: Current treatments for functional dyspepsia have limited efficacy or present safety issues. We aimed to assess spore-forming probiotics in functional dyspepsia as monotherapy or add-on therapy to long-term treatment with proton-pump inhibitors. METHODS: In this single-centre, randomised, double-blind, placebo-controlled pilot trial that took place at University Hospitals Leuven (Leuven, Belgium), adult patients (≥18 years) with functional dyspepsia (as defined by Rome IV criteria, on proton-pump inhibitors or off proton-pump inhibitors) were randomly assigned (1:1) via computer-generated blocked lists, stratified by proton-pump inhibitor status, to receive 8 weeks of treatment with probiotics (Bacillus coagulans MY01 and Bacillus subtilis MY02, 2·5 × 109 colony-forming units per capsule) or placebo consumed twice per day, followed by an open-label extension phase of 8 weeks. Individuals with a history of abdominal surgery, diabetes, coeliac or inflammatory bowel disease, active psychiatric conditions, and use of immunosuppressant drugs, antibiotics, or probiotics in the past 3 months were excluded. All patients and on-site study personnel were masked to treatment allocation in the first 8 weeks. Symptoms, immune activation, and faecal microbiota were assessed and recorded. The primary endpoint was a decrease of at least 0·7 in the postprandial distress syndrome (PDS) score of the Leuven Postprandial Distress Scale in patients with a baseline PDS score of 1 or greater (at least mild symptoms), assessed in the intention-to-treat population. This study is registered with ClinicalTrials.gov, NCT04030780. FINDINGS: Between June 3, 2019, and March 11, 2020, of 93 individuals assessed for eligibility, we included 68 patients with functional dyspepsia (51 [75%] women, mean age 40·1 years [SD 14·4], 34 [50%] on proton-pump inhibitors). We randomly assigned 32 participants to probiotics and 36 to placebo. The proportion of clinical responders was higher with probiotics (12 [48%] of 25) than placebo (six [20%] of 30; relative risk 1·95 [95% CI 1·07-4·11]; p=0·028). The number of patients with adverse events was similar with probiotics (five [16%] of 32) and placebo (12 [33%] of 36). Two serious adverse events occurring during the open-label phase (appendicitis and syncope in two separate patients) were assessed as unlikely to be related to the study product. INTERPRETATION: In this exploratory study, B coagulans MY01 and B subtilis MY02 were efficacious and safe in the treatment of functional dyspepsia. Participants had potentially beneficial immune and microbial changes, which could provide insights into possible underlying mechanisms as future predictors or treatment targets. FUNDING: MY HEALTH.


Assuntos
Suplementos Nutricionais/efeitos adversos , Dispepsia/dietoterapia , Dispepsia/fisiopatologia , Probióticos/uso terapêutico , Adulto , Bacillus coagulans , Bacillus subtilis , Bélgica/epidemiologia , Estudos de Casos e Controles , Método Duplo-Cego , Dispepsia/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Placebos/administração & dosagem , Prevalência , Probióticos/administração & dosagem , Probióticos/efeitos adversos , Inibidores da Bomba de Prótons/uso terapêutico , Segurança , Esporos/química , Resultado do Tratamento
12.
J Agric Food Chem ; 69(36): 10638-10647, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34460265

RESUMO

Dietary fiber has been considered a key element in shaping the beneficial host-microbe symbiosis. In the present study, we identified Rosa roxburghii Tratt fruits as a promising dietary fiber source. The physicochemical properties and in vitro fermentability by human fecal microbes of R. roxburghii pomace water insoluble dietary fiber (RIDF) obtained from ultrasonic extraction and ultrahigh pressure (90 MPa)-treated RIDF (RIDF-90) were compared to those of R. roxburghii Tratt pomace (R). Ultrahigh pressure modification significantly increased the water holding, oil holding, and swelling capacity of RIDF-90 in comparison to R and RIDF. RIDF-90 displayed the slowest fermentation rate yet yielded the highest butyrate production. The superior butyrogenic properties of both RIDF-90 and, in part, RIDF were reflected by increased Coprococcus and Ruminococcus levels, demonstrating that ultrasonic extraction and/or further ultrahigh pressure treatment of insoluble fibers promotes the prebiotic value of R. roxburghii Tratt.


Assuntos
Microbiota , Rosa , Fibras na Dieta , Fermentação , Frutas , Humanos
13.
Gut Microbes ; 13(1): 1953246, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34432600

RESUMO

Enterotoxigenic Escherichia coli (ETEC) is one of the most common causes of acute traveler's diarrhea. Adhesins and enterotoxins constitute the major ETEC virulence traits. With the dramatic increase in antibiotic resistance, probiotics are considered a wholesome alternative to prevent or treat ETEC infections. Here, we examined the antimicrobial properties of the probiotic Saccharomyces cerevisiae CNCM I-3856 against ETEC H10407 pathogenesis upon co-administration in the TNO gastrointestinal Model (TIM-1), simulating the physicochemical and enzymatic conditions of the human upper digestive tract and preventive treatment in the Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME), integrating microbial populations of the ileum and ascending colon. Interindividual variability was assessed by separate M-SHIME experiments with microbiota from six human individuals. The probiotic did not affect ETEC survival along the digestive tract. However, ETEC pathogenicity was significantly reduced: enterotoxin encoding virulence genes were repressed, especially in the TIM-1 system, and a lower enterotoxin production was noted. M-SHIME experiments revealed that 18-days probiotic treatment stimulate the growth of Bifidobacterium and Lactobacillus in different gut regions (mucosal and luminal, ileum and ascending colon) while a stronger metabolic activity was noted in terms of short-chain fatty acids (acetate, propionate, and butyrate) and ethanol production. Moreover, the probiotic pre-treated microbiota displayed a higher robustness in composition following ETEC challenge compared to the control condition. We thus demonstrated the multi-inhibitory properties of the probiotic S. cerevisiae CNCM I-3856 against ETEC in the overall simulated human digestive tract, regardless of the inherent variability across individuals in the M-SHIME.


Assuntos
Escherichia coli Enterotoxigênica/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Doenças Transmitidas por Alimentos/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Probióticos/farmacologia , Probióticos/uso terapêutico , Virulência/efeitos dos fármacos , Infecções por Escherichia coli/fisiopatologia , Humanos , Saccharomyces cerevisiae/química
14.
FEMS Microbiol Ecol ; 97(9)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34320208

RESUMO

A recently introduced quantitative framework for gut microbiota analysis indicated that microbial load alterations can be linked to various diseases, making it essential to pinpoint its determinants. We identified nutrient load as a main driver of the quantitative microbial community composition and functionality in vitro by stepwise decreasing standardized feed concentrations from 100% to 33%, 20% and 10% in 5-day intervals. While the proportional composition and metabolic profile were mainly determined by the inter-individual variability (35% and 41%), nutrient load accounted for 58%, 23% and 65% of the observed variation in the microbial load, quantitative composition and net daily metabolite production, respectively. After the 10-fold nutrient reduction, the microbial load decreased by 79.72 ± 9% and 82.96 ± 1.66% in the proximal and distal colon, respectively, while the net total short-chain fatty acid production dropped by 79.42 ± 4.42% and 84.58 ± 2.42%, respectively. The majority of microbial taxa quantitatively decreased, whereas a select group of nutritional specialists, such as Akkermansia muciniphila and Bilophila wadsworthia, and a number of opportunistic pathogens remained unaffected. This shows that nutrient load is an important driver of the human gut microbiome and should be considered in future in vitro and in vivo dietary research.


Assuntos
Microbioma Gastrointestinal , Microbiota , Ácidos Graxos Voláteis , Humanos , Nutrientes , Verrucomicrobia
15.
Appl Environ Microbiol ; 87(4)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33277271

RESUMO

IMPORTANCE SECTION Research into identification of biomarkers for gut health and ways to modulate the microbiota composition and activity to improve health, has put Akkermansia muciniphila in the spotlight. As a mucin degrader, A. muciniphila colonizes the interesting but not-fully described host-glycan degradation niche., . Plenty of research concerning A. muciniphila has been done, but little is known about its behavior in the complex microbial ecosystem in the colon, about the potential role of mucins to influence A. muciniphila behavior and the impact of its probiotic administration on the microbial ecosystem.This study aimed at investigating the impact of A. muciniphila administration on the endogenous community while also taking into account its nutritional specificity. As such, the effect of A.mucinihpila administration was investigated with and without addition of mucin. This allowed us to elucidate the importance of mucin presence to modulate the efficiency of the probiotic supplementation with A. muciniphila Akkermansia muciniphila is an abundantly present commensal mucin degrading gut bacterium (1 - 4%) , widely distributed among healthy individuals. It has been positioned as a health biomarker and is currently explored as a biotherapeutic agent and next generation probiotic. Preliminary and ongoing research is mostly based on in vivo mouse models and human intervention trials. While these allow the assessment of physiologically relevant endpoints, the analysis of fecal samples presents limitations with respect to the in-depth mechanistic characterization of Akkermansia effects at the level of the microbiome. We aimed to evaluate the effect of A. muciniphila treatment on the endogenous community from four different donors in a validated, controlled in vitro model of the gut microbial ecosystem (SHIME). Taking into account the nutritional specificity of A. muciniphila, and the prebiotic-like action of mucins in the colon environment, the interplay between mucin, A. muciniphila and the endogenous community was investigated. The effects on the microbial community composition and functionality of A. muciniphila supplementation without mucin were limited, whereas mucin addition successfully induced compositional and metabolic changes in the gut microbiota. Indeed, mucin addition resulted in significantly higher acetate, propionate and butyrate production for all four donors, and the increase of several species, including A. muciniphila, Ruminococcus, Clostridium cluster XIVa, and Lachnospiraceae This study revealed that the supplementation of A. muciniphila together with mucin limited the observed prebiotic-like effect of mucin in inducing compositional changes.

16.
Front Microbiol ; 11: 577474, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33250870

RESUMO

The use of additives in food products has become an important public health concern. In recent reports, dietary emulsifiers have been shown to affect the gut microbiota, contributing to a pro-inflammatory phenotype and metabolic syndrome. So far, it is not yet known whether similar microbiome shifts are observable for a more diverse set of emulsifier types and to what extent these effects vary with the unique features of an individual's microbiome. To bridge this gap, we investigated the effect of five dietary emulsifiers on the fecal microbiota from 10 human individuals upon a 48 h exposure. Community structure was assessed with quantitative microbial profiling, functionality was evaluated by measuring fermentation metabolites, and pro-inflammatory properties were assessed with the phylogenetic prediction algorithm PICRUSt, together with a TLR5 reporter cell assay for flagellin. A comparison was made between two mainstream chemical emulsifiers (carboxymethylcellulose and P80), a natural extract (soy lecithin), and biotechnological emulsifiers (sophorolipids and rhamnolipids). While fecal microbiota responded in a donor-dependent manner to the different emulsifiers, profound differences between emulsifiers were observed. Rhamnolipids, sophorolipids, and soy lecithin eliminated 91 ± 0, 89 ± 1, and 87 ± 1% of the viable bacterial population after 48 h, yet they all selectively increased the proportional abundance of putative pathogens. Moreover, profound shifts in butyrate (-96 ± 6, -73 ± 24, and -34 ± 25%) and propionate (+13 ± 24, +88 ± 50, and +29 ± 16%) production were observed for these emulsifiers. Phylogenetic prediction indicated higher motility, which was, however, not confirmed by increased flagellin levels using the TLR5 reporter cell assay. We conclude that dietary emulsifiers can severely impact the gut microbiota, and this seems to be proportional to their emulsifying strength, rather than emulsifier type or origin. As biotechnological emulsifiers were especially more impactful than chemical emulsifiers, caution is warranted when considering them as more natural alternatives for clean label strategies.

17.
BMC Biol ; 18(1): 141, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33054775

RESUMO

BACKGROUND: Enterotoxigenic Escherichia coli (ETEC) substantially contributes to the burden of diarrheal illnesses in developing countries. With the use of complementary in vitro models of the human digestive environment, TNO gastrointestinal model (TIM-1), and Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME), we provided the first detailed report on the spatial-temporal modulation of ETEC H10407 survival, virulence, and its interplay with gut microbiota. These systems integrate the main physicochemical parameters of the human upper digestion (TIM-1) and simulate the ileum vs ascending colon microbial communities and luminal vs mucosal microenvironments, captured from six fecal donors (M-SHIME). RESULTS: A loss of ETEC viability was noticed upon gastric digestion, while a growth renewal was found at the end of jejunal and ileal digestion. The remarkable ETEC mucosal attachment helped to maintain luminal concentrations above 6 log10 mL-1 in the ileum and ascending colon up to 5 days post-infection. Seven ETEC virulence genes were monitored. Most of them were switched on in the stomach and switched off in the TIM-1 ileal effluents and in a late post-infectious stage in the M-SHIME ascending colon. No heat-labile enterotoxin production was measured in the stomach in contrast to the ileum and ascending colon. Using 16S rRNA gene-based amplicon sequencing, ETEC infection modulated the microbial community structure of the ileum mucus and ascending colon lumen. CONCLUSIONS: This study provides a better understanding of the interplay between ETEC and gastrointestinal cues and may serve to complete knowledge on ETEC pathogenesis and inspire novel prophylactic strategies for diarrheal diseases.


Assuntos
Escherichia coli Enterotoxigênica/fisiologia , Escherichia coli Enterotoxigênica/patogenicidade , Infecções por Escherichia coli/microbiologia , Microbioma Gastrointestinal/fisiologia , Colo Ascendente/microbiologia , Humanos , Íleo/microbiologia , Viabilidade Microbiana
18.
Water Res ; 185: 116223, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32739699

RESUMO

Resource recovery from source-separated urine can shorten nutrient cycles on Earth and is essential in regenerative life support systems for deep-space exploration. In this study, a robust two-stage, energy-efficient, gravity-independent urine treatment system was developed to transform fresh real human urine into a stable nutrient solution. In the first stage, up to 85% of the COD was removed in a microbial electrolysis cell (MEC), converting part of the energy in organic compounds (27-46%) into hydrogen gas and enabling full nitrogen recovery by preventing nitrogen losses through denitrification in the second stage. Besides COD removal, all urea was hydrolysed in the MEC, resulting in a stream rich in ammoniacal nitrogen and alkalinity, and low in COD. This stream was fed into a membrane-aerated biofilm reactor (MABR) in order to convert the volatile and toxic ammoniacal nitrogen to non-volatile nitrate by nitrification. Bio-electrochemical pre-treatment allowed to recover all nitrogen as nitrate in the MABR at a bulk-phase dissolved oxygen level below 0.1 mg O2 L-1. In contrast, feeding the MABR directly with raw urine (omitting the first stage), at the same nitrogen loading rate, resulted in nitrogen loss (18%) due to denitrification. The MEC and MABR were characterised by very distinct and diverse microbial communities. While (strictly) anaerobic genera, such as Geobacter (electroactive bacteria), Thiopseudomonas, a Lentimicrobiaceae member, Alcaligenes and Proteiniphilum prevailed in the MEC, the MABR was dominated by aerobic genera, including Nitrosomonas (a known ammonium oxidiser), Moheibacter and Gordonia. The two-stage approach yielded a stable nitrate-rich, COD-low nutrient solution, suitable for plant and microalgae cultivation.


Assuntos
Nitrificação , Nitrogênio , Biofilmes , Reatores Biológicos , Desnitrificação , Humanos , Nitrosomonas , Eliminação de Resíduos Líquidos
19.
Kidney Int ; 97(6): 1230-1242, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32317112

RESUMO

Chronic kidney disease (CKD) is characterized by accumulation of protein-bound uremic toxins such as p-cresyl sulfate, p-cresyl glucuronide, indoxyl sulfate and indole-3-acetic acid, which originate in the gut. Intestinal bacteria metabolize aromatic amino acids into p-cresol and indole, (further conjugated in the colon mucosa and liver) and indole-3-acetic acid. Here we measured fecal, plasma and urine metabolite concentrations; the contribution of gut bacterial generation to plasma protein-bound uremic toxins accumulation; and influx into the gut of circulating protein-bound uremic toxins at different stages of CKD. Feces, blood and urine were collected from 14 control individuals and 141 patients with CKD. Solutes were quantified by ultra-high performance liquid chromatography. To assess the rate of bacterial generation of p-cresol, indole and indole-3-acetic acid, fecal samples were cultured ex vivo. With CKD progression, an increase in protein-bound uremic toxins levels was observed in plasma, whereas the levels of these toxins and their precursors remained the same in feces and urine. Anaerobic culture of fecal samples showed no difference in ex vivo p-cresol, indole and indole-3-acetic acid generation. Therefore, differences in plasma protein-bound uremic toxins levels between different CKD stages cannot be explained by differences in bacterial generation rates in the gut, suggesting retention due to impaired kidney function as the main contributor to their increased plasma levels. Thus, as fractional clearance decreased with the progression of CKD, tubular clearance appeared to be more affected than the glomerular filtration rate, and there was no net increase in protein-bound uremic toxins influx into the gut lumen with increased plasma levels.


Assuntos
Microbioma Gastrointestinal , Insuficiência Renal Crônica , Toxinas Biológicas , Uremia , Fezes , Humanos , Indicã , Insuficiência Renal Crônica/diagnóstico
20.
J Anim Sci ; 98(1)2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31768533

RESUMO

Whereas a wide variety of in vitro models have been developed and validated to assess the effect of specific food ingredients on the human gut microbiome, such models have only been developed and applied to a limited extent for companion animals. Since the use of pre- and probiotics to improve gut health is an emerging research topic in the field of companion animals and as dogs are often used as laboratory animals in developing and testing of pharmaceuticals, the current study aimed to establish an adequate canine in vitro model. This consisted of a four-stage reactor composed of a stomach and small intestinal compartment followed by a proximal and distal colon. This semi-continuous gastrointestinal tract model allowed a long-term, region-dependent, and pH-controlled simulation of the colon-associated microbial community of dogs. Upon reaching a functional steady state, the simulated canine microbial community composition proved to be representative of the in vivo situation. Indeed, the predominant bacterial phyla present in the in vitro proximal and distal colon corresponded with the main bacterial phyla detected in the fecal material of the dogs, resulting in an average community composition along the simulated canine gastrointestinal tract of 50.5% Firmicutes, 34.5% Bacteroidetes, 7.4% Fusobacteria, 4.9% Actinobacteria, and 2.7% Proteobacteria. A parallel in vivo-in vitro comparison assessing the effects of fructooligosaccharides (FOS) on the canine microbial community composition showed a consistent stimulation of Lactobacillus concentrations in the in vivo fecal samples as well as in the in vitro canine gut model. Furthermore, the in vitro platform provided additional insights about the prebiotic effect of FOS supplementation of dogs, such as a reduced abundance of Megamonas spp. which are only present in very low abundance in in vivo fecal samples, indicating an interesting application potential of the developed canine in vitro model in research related to gastrointestinal health of dogs.


Assuntos
Bactérias/classificação , Cães/microbiologia , Microbioma Gastrointestinal , Lactobacillus/fisiologia , Probióticos/análise , Animais , Bactérias/isolamento & purificação , Fezes/microbiologia , Trato Gastrointestinal/microbiologia , Humanos , Intestinos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA