Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Nat Commun ; 15(1): 4069, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744878

RESUMO

In malaria epidemiology, interpolation frameworks based on available observations are critical for policy decisions and interpreting disease burden. Updating our understanding of the empirical evidence across different populations, settings, and timeframes is crucial to improving inference for supporting public health. Here, via individual-based modeling, we evaluate a large, multicountry, contemporary Plasmodium falciparum severe malaria dataset to better understand the relationship between prevalence and incidence of malaria pediatric hospitalizations - a proxy of malaria severe outcomes- in East-Africa. We find that life-long exposure dynamics, and subsequent protection patterns in children, substantially determine the likelihood of malaria hospitalizations relative to ongoing prevalence at the population level. Unsteady transmission patterns over a lifetime in children -increasing or decreasing- lead to an exponential relationship of hospitalization rates versus prevalence rather than the asymptotic pattern observed under steady transmission. Addressing this increase in the complexity of malaria epidemiology is crucial to update burden assessments via inference models that guide current and future policy decisions.


Assuntos
Hospitalização , Malária Falciparum , Humanos , Malária Falciparum/epidemiologia , Malária Falciparum/transmissão , Malária Falciparum/parasitologia , Criança , Prevalência , Pré-Escolar , Hospitalização/estatística & dados numéricos , Lactente , Incidência , Plasmodium falciparum , Feminino , Masculino , Adolescente
2.
PLoS Negl Trop Dis ; 16(11): e0010828, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36409773

RESUMO

Currently available drugs against Trypanosoma cruzi infection, which causes 12000 deaths annually, have limitations in their efficacy, safety and tolerability. The evaluation of therapeutic responses to available and new compounds is based on parasite detection in the bloodstream but remains challenging because a substantial proportion of infected individuals have undetectable parasitemia even when using diagnostic tools with the highest accuracy. We characterize parasite dynamics which might impact drug efficacy assessments in chronic Chagas by analyzing pre- and post-treatment quantitative-PCR data obtained from blood samples collected regularly over a year. We show that parasitemia remains at a steady-state independently of the diagnostic sensitivity. This steady-state can be probabilistically quantified and robustly predicted at an individual level. Furthermore, individuals can be assigned to categories with distinct parasitological status, allowing a more detailed evaluation of the efficacy outcomes and adjustment for potential biases. Our analysis improves understanding of parasite dynamics and provides a novel background for optimizing future drug efficacy trials in Chagas disease. Trial Registration: original trial registered with ClinicalTrials.gov, number NCT01489228.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Humanos , Doença de Chagas/parasitologia , Parasitemia/parasitologia , Infecção Persistente , Reação em Cadeia da Polimerase em Tempo Real , Trypanosoma cruzi/genética , Ensaios Clínicos como Assunto
3.
PLoS Comput Biol ; 18(3): e1009964, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35358171

RESUMO

When responding to infectious disease outbreaks, rapid and accurate estimation of the epidemic trajectory is critical. However, two common data collection problems affect the reliability of the epidemiological data in real time: missing information on the time of first symptoms, and retrospective revision of historical information, including right censoring. Here, we propose an approach to construct epidemic curves in near real time that addresses these two challenges by 1) imputation of dates of symptom onset for reported cases using a dynamically-estimated "backward" reporting delay conditional distribution, and 2) adjustment for right censoring using the NobBS software package to nowcast cases by date of symptom onset. This process allows us to obtain an approximation of the time-varying reproduction number (Rt) in real time. We apply this approach to characterize the early SARS-CoV-2 outbreak in two Spanish regions between March and April 2020. We evaluate how these real-time estimates compare with more complete epidemiological data that became available later. We explore the impact of the different assumptions on the estimates, and compare our estimates with those obtained from commonly used surveillance approaches. Our framework can help improve accuracy, quantify uncertainty, and evaluate frequently unstated assumptions when recovering the epidemic curves from limited data obtained from public health systems in other locations.


Assuntos
COVID-19 , Epidemias , COVID-19/epidemiologia , Humanos , Reprodutibilidade dos Testes , Estudos Retrospectivos , SARS-CoV-2
5.
Lancet Planet Health ; 5(10): e731-e738, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34627477

RESUMO

BACKGROUND: Guyana reported a significant rise in malaria between 2008 and 2014. As there was no evidence of impairment of national malaria control strategies, public health authorities attributed the surge to a temporal increase in gold mining activity in forested regions. However, systematic analysis of this association is lacking because of the difficulties associated with collecting reliable data for both malaria and mining. We aimed to investigate the association between the international gold price and Plasmodium falciparum malaria transmission in Guyana between 2007 and 2019. We also aimed to evaluate the association between P falciparum cases and the El Niño-Southern Oscillation pattern, which has previously been suggested as a major driver of malaria. METHODS: We used national malaria surveillance data from Guyana to estimate the correlation over time between the international gold price and reported P falciparum infections in individuals who were likely to be involved in mining activities (ie, men and boys aged between 15 and 50 years who were living in mining regions) for each month between 2007 and 2019. We compared the estimates with those obtained from individuals who were unlikely to be directly involved in mining activities (ie, women, children aged 12 years and younger, and adults aged over 70 years) and estimates obtained from individuals living in non-mining regions. We also evaluated the correlation between P falciparum infections and the El Niño-Southern Oscillation pattern in the same subpopulations and time period. Lastly, we evaluated the performance of a statistical model formulated to estimate P falciparum infections in real time using the international gold price as the predictor variable. FINDINGS: The proportion of P falciparum malaria cases in temporary residents, which was used as a proxy for circulating individuals involved in gold mining, was highest during the years of peak gold price (ie, between 2008 and 2014). Cases of malaria in all demographic groups showed a strong positive correlation with the gold price, but only in regions with mining camps (0·88 [95% CI 0·84-0·89] for boys and men aged between 15 and 50 years and 0·80 [0·73-0·85] for the aggregated population of women, children aged 12 years and younger, and adults older than 70 years). The highest correlation occurred earlier in men and boys aged between 15 and 50 years, the demographic most likely to be miners, suggesting that transmission in mining camps is followed by infections in the community. On the basis of these findings, we were able to reliably forecast P falciparum malaria trends using only the gold price as the predictor variable. A 1% increase in gold price was associated with a 2·13% increase in P falciparum infections after 1 month in the mining populations, and with a 1·63% increase after 2 months in the non-mining populations. Lastly, La Niña climatic events showed an additional, smaller positive correlation with malaria transmission. INTERPRETATION: Our analysis provides evidence that the P falciparum malaria surge observed in Guyana between 2008 and 2014 was likely to have been driven mainly by an increase in gold mining, while climate factors might have contributed synergistically. We propose that the international gold price over time is a useful indicator of malaria trends. We conclude that the feasibility of malaria elimination in Guyana, and in other areas in the Amazon where malaria and gold mining overlap, should be evaluated against the challenges posed by rapidly rising gold prices. FUNDING: Ramón Areces Foundation, National Institutes of Health, and National Institute of General Medical Sciences.


Assuntos
Ouro , Malária , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Guiana/epidemiologia , Humanos , Lactente , Malária/epidemiologia , Masculino , Pessoa de Meia-Idade , Mineração , Projetos de Pesquisa , Adulto Jovem
6.
Epidemiol Infect ; 149: e102, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33902779

RESUMO

Estimating the lengths-of-stay (LoS) of hospitalised COVID-19 patients is key for predicting the hospital beds' demand and planning mitigation strategies, as overwhelming the healthcare systems has critical consequences for disease mortality. However, accurately mapping the time-to-event of hospital outcomes, such as the LoS in the intensive care unit (ICU), requires understanding patient trajectories while adjusting for covariates and observation bias, such as incomplete data. Standard methods, such as the Kaplan-Meier estimator, require prior assumptions that are untenable given current knowledge. Using real-time surveillance data from the first weeks of the COVID-19 epidemic in Galicia (Spain), we aimed to model the time-to-event and event probabilities of patients' hospitalised, without parametric priors and adjusting for individual covariates. We applied a non-parametric mixture cure model and compared its performance in estimating hospital ward (HW)/ICU LoS to the performances of commonly used methods to estimate survival. We showed that the proposed model outperformed standard approaches, providing more accurate ICU and HW LoS estimates. Finally, we applied our model estimates to simulate COVID-19 hospital demand using a Monte Carlo algorithm. We provided evidence that adjusting for sex, generally overlooked in prediction models, together with age is key for accurately forecasting HW and ICU occupancy, as well as discharge or death outcomes.


Assuntos
COVID-19/epidemiologia , Previsões/métodos , Tempo de Internação/tendências , Modelos Estatísticos , Fatores Etários , Ocupação de Leitos/estatística & dados numéricos , Ocupação de Leitos/tendências , Mortalidade Hospitalar/tendências , Hospitais , Humanos , Unidades de Terapia Intensiva/estatística & dados numéricos , Unidades de Terapia Intensiva/tendências , Tempo de Internação/estatística & dados numéricos , Alta do Paciente/estatística & dados numéricos , Alta do Paciente/tendências , SARS-CoV-2 , Fatores Sexuais , Espanha/epidemiologia , Estatísticas não Paramétricas , Análise de Sobrevida
7.
Res Sq ; 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33880465

RESUMO

Residents of Long-Term Care Facilities (LTCFs) represent a major share of COVID-19 deaths worldwide. Information on vaccine effectiveness in these settings is essential to improve mitigation strategies, but evidence remains limited. To evaluate the early effect of the administration of BNT162b2 mRNA vaccines in LTCFs, we monitored subsequent SARS-CoV-2 documented infections and deaths in Catalonia, a region of Spain, and compared them to counterfactual model predictions from February 6th to March 28th, 2021, the subsequent time period after which 70% of residents were fully vaccinated. We calculated the reduction in SARS-CoV-2 documented infections and deaths as well as the detected county-level transmission. We estimated that once more than 70% of the LTCFs population were fully vaccinated, 74% (58%-81%, 90% CI) of COVID-19 deaths and 75% (36%-86%) of all documented infections were prevented. Further, detectable transmission was reduced up to 90% (76-93% 90%CI). Our findings provide evidence that high-coverage vaccination is the most effective intervention to prevent SARS-CoV-2 transmission and death. Widespread vaccination could be a feasible avenue to control the COVID-19 pandemic.

8.
medRxiv ; 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-33880479

RESUMO

Residents of Long-Term Care Facilities (LTCFs) represent a major share of COVID-19 deaths worldwide. Measuring the vaccine effectiveness among the most vulnerable in these settings is essential to monitor and improve mitigation strategies. We evaluated the early effect of the administration of BNT162b2 mRNA vaccines to individuals older than 64 years residing in LTCFs in Catalonia, a region of Spain. We monitored all the SARS-CoV-2 documented infections and deaths among LTCFs residents from February 6th to March 28th, 2021, the subsequent time period after which 70% of them were fully vaccinated. We developed a modeling framework based on the relation between community and LTFCs transmission during the pre-vaccination period (July -December 2020) and compared the true observations with the counterfactual model predictions. As a measure of vaccine effectiveness, we computed the total reduction in SARS-CoV-2 documented infections and deaths among residents of LTCFs over time, as well as the reduction on the detected transmission for all the LTCFs. We estimated that once more than 70% of the LTCFs population were fully vaccinated, 74% (58%-81%, 90% CI) of COVID-19 deaths and 75% (36%-86%, 90% CI) of all expected documented infections among LTCFs residents were prevented. Further, detectable transmission among LTCFs residents was reduced up to 90% (76-93%, 90%CI) relative to that expected given transmission in the community. Our findings provide evidence that high-coverage vaccination is the most effective intervention to prevent SARS-CoV-2 transmission and death among LTCFs residents. Conditional on key factors such as vaccine roll out, escape and coverage --across age groups--, widespread vaccination could be a feasible avenue to control the COVID-19 pandemic.

9.
Sci Rep ; 11(1): 6995, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33772076

RESUMO

In response to the SARS-CoV-2 pandemic, unprecedented travel restrictions and stay-at-home orders were enacted around the world. Ultimately, the public's response to announcements of lockdowns-defined as restrictions on both local movement or long distance travel-will determine how effective these kinds of interventions are. Here, we evaluate the effects of lockdowns on human mobility and simulate how these changes may affect epidemic spread by analyzing aggregated mobility data from mobile phones. We show that in 2020 following lockdown announcements but prior to their implementation, both local and long distance movement increased in multiple locations, and urban-to-rural migration was observed around the world. To examine how these behavioral responses to lockdown policies may contribute to epidemic spread, we developed a simple agent-based spatial model. Our model shows that this increased movement has the potential to increase seeding of the epidemic in less urban areas, which could undermine the goal of the lockdown in preventing disease spread. Lockdowns play a key role in reducing contacts and controlling outbreaks, but appropriate messaging surrounding their announcement and careful evaluation of changes in mobility are needed to mitigate the possible unintended consequences.


Assuntos
COVID-19/prevenção & controle , Movimento , Quarentena , COVID-19/epidemiologia , COVID-19/virologia , Humanos , Modelos Teóricos , Pandemias , SARS-CoV-2/isolamento & purificação , Viagem
10.
Nat Commun ; 12(1): 311, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436574

RESUMO

Early in the COVID-19 pandemic, predictions of international outbreaks were largely based on imported cases from Wuhan, China, potentially missing imports from other cities. We provide a method, combining daily COVID-19 prevalence and flight passenger volume, to estimate importations from 18 Chinese cities to 43 international destinations, including 26 in Africa. Global case importations from China in early January came primarily from Wuhan, but the inferred source shifted to other cities in mid-February, especially for importations to African destinations. We estimate that 10.4 (6.2 - 27.1) COVID-19 cases were imported to these African destinations, which exhibited marked variation in their magnitude and main sources of importation. We estimate that 90% of imported cases arrived between 17 January and 7 February, prior to the first case detections. Our results highlight the dynamic role of source locations, which can help focus surveillance and response efforts.


Assuntos
COVID-19/epidemiologia , Pandemias , Viagem , África/epidemiologia , Aeronaves , COVID-19/transmissão , China/epidemiologia , Humanos , Modelos Teóricos , Prevalência , SARS-CoV-2 , Viagem/estatística & dados numéricos
11.
Commun Med (Lond) ; 1: 16, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35602197

RESUMO

Background: Residents of Long-Term Care Facilities (LTCFs) represent a major share of COVID-19 deaths worldwide. Measuring the vaccine effectiveness among the most vulnerable in these settings is essential to monitor and improve mitigation strategies. Methods: We evaluate the early effect of the administration of BNT162b2-mRNA vaccine to individuals older than 64 years residing in LTCFs in Catalonia, Spain. We monitor all the SARS-CoV-2 documented infections and deaths among LTCFs residents once more than 70% of them were fully vaccinated (February-March 2021). We develop a modeling framework based on the relationship between community and LTCFs transmission during the pre-vaccination period (July-December 2020). We compute the total reduction in SARS-CoV-2 documented infections and deaths among residents of LTCFs over time, as well as the reduction in the detected transmission for all the LTCFs. We compare the true observations with the counterfactual predictions. Results: We estimate that once more than 70% of the LTCFs population are fully vaccinated, 74% (58-81%, 90% CI) of COVID-19 deaths and 75% (36-86%, 90% CI) of all expected documented infections among LTCFs residents are prevented. Further, detectable transmission among LTCFs residents is reduced up to 90% (76-93%, 90% CI) relative to that expected given transmission in the community. Conclusions: Our findings provide evidence that high-coverage vaccination is the most effective intervention to prevent SARS-CoV-2 transmission and death among LTCFs residents. Widespread vaccination could be a feasible avenue to control the COVID-19 pandemic conditional on key factors such as vaccine escape, roll out and coverage.

12.
PLoS Comput Biol ; 16(12): e1008409, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33301457

RESUMO

Estimation of the effective reproductive number Rt is important for detecting changes in disease transmission over time. During the Coronavirus Disease 2019 (COVID-19) pandemic, policy makers and public health officials are using Rt to assess the effectiveness of interventions and to inform policy. However, estimation of Rt from available data presents several challenges, with critical implications for the interpretation of the course of the pandemic. The purpose of this document is to summarize these challenges, illustrate them with examples from synthetic data, and, where possible, make recommendations. For near real-time estimation of Rt, we recommend the approach of Cori and colleagues, which uses data from before time t and empirical estimates of the distribution of time between infections. Methods that require data from after time t, such as Wallinga and Teunis, are conceptually and methodologically less suited for near real-time estimation, but may be appropriate for retrospective analyses of how individuals infected at different time points contributed to the spread. We advise caution when using methods derived from the approach of Bettencourt and Ribeiro, as the resulting Rt estimates may be biased if the underlying structural assumptions are not met. Two key challenges common to all approaches are accurate specification of the generation interval and reconstruction of the time series of new infections from observations occurring long after the moment of transmission. Naive approaches for dealing with observation delays, such as subtracting delays sampled from a distribution, can introduce bias. We provide suggestions for how to mitigate this and other technical challenges and highlight open problems in Rt estimation.


Assuntos
Número Básico de Reprodução , COVID-19 , COVID-19/epidemiologia , COVID-19/transmissão , Biologia Computacional , Humanos , Modelos Estatísticos , SARS-CoV-2
13.
medRxiv ; 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32607522

RESUMO

Estimation of the effective reproductive number, R t , is important for detecting changes in disease transmission over time. During the COVID-19 pandemic, policymakers and public health officials are using R t to assess the effectiveness of interventions and to inform policy. However, estimation of R t from available data presents several challenges, with critical implications for the interpretation of the course of the pandemic. The purpose of this document is to summarize these challenges, illustrate them with examples from synthetic data, and, where possible, make recommendations. For near real-time estimation of R t , we recommend the approach of Cori et al. (2013), which uses data from before time t and empirical estimates of the distribution of time between infections. Methods that require data from after time t, such as Wallinga and Teunis (2004), are conceptually and methodologically less suited for near real-time estimation, but may be appropriate for retrospective analyses of how individuals infected at different time points contributed to spread. We advise against using methods derived from Bettencourt and Ribeiro (2008), as the resulting R t estimates may be biased if the underlying structural assumptions are not met. Two key challenges common to all approaches are accurate specification of the generation interval and reconstruction of the time series of new infections from observations occurring long after the moment of transmission. Naive approaches for dealing with observation delays, such as subtracting delays sampled from a distribution, can introduce bias. We provide suggestions for how to mitigate this and other technical challenges and highlight open problems in R t estimation.

15.
medRxiv ; 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32511442

RESUMO

Risk of COVID-19 infection in Wuhan has been estimated using imported case counts of international travelers, often under the assumption that all cases in travelers are ascertained. Recent work indicates variation among countries in detection capacity for imported cases. Singapore has historically had very strong epidemiological surveillance and contact-tracing capacity and has shown in the COVID-19 epidemic evidence of a high sensitivity of case detection. We therefore used a Bayesian modeling approach to estimate the relative imported case detection capacity for other countries compared to that of Singapore. We estimate that the global ability to detect imported cases is 38% (95% HPDI 22% - 64%) of Singapore's capacity. Equivalently, an estimate of 2.8 (95% HPDI 1.5 - 4.4) times the current number of imported cases, could have been detected, if all countries had had the same detection capacity as Singapore. Using the second component of the Global Health Security index to stratify likely case-detection capacities, we found that the ability to detect imported cases relative to Singapore among high surveillance locations is 40% (95% HPDI 22% - 67%), among intermediate surveillance locations it is 37% (95% HPDI 18% - 68%), and among low surveillance locations it is 11% (95% HPDI 0% - 42%). Using a simple mathematical model, we further find that treating all travelers as if they were residents (rather than accounting for the brief stay of some of these travelers in Wuhan) can modestly contribute to underestimation of prevalence as well. We conclude that estimates of case counts in Wuhan based on assumptions of perfect detection in travelers may be underestimated by several fold, and severity correspondingly overestimated by several fold. Undetected cases are likely in countries around the world, with greater risk in countries of low detection capacity and high connectivity to the epicenter of the outbreak.

16.
medRxiv ; 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32511613

RESUMO

Early in the COVID-19 pandemic, when cases were predominantly reported in the city of Wuhan, China, local outbreaks in Europe, North America, and Asia were largely predicted from imported cases on flights from Wuhan, potentially missing imports from other key source cities. Here, we account for importations from Wuhan and from other cities in China, combining COVID-19 prevalence estimates in 18 Chinese cities with estimates of flight passenger volume to predict for each day between early December 2019 to late February 2020 the number of cases exported from China. We predict that the main source of global case importation in early January was Wuhan, but due to the Wuhan lockdown and the rapid spread of the virus, the main source of case importation from mid February became Chinese cities outside of Wuhan. For destinations in Africa in particular, non-Wuhan cities were an important source of case imports (1 case from those cities for each case from Wuhan, range of model scenarios: 0.1-9.8). Our model predicts that 18.4 (8.5 - 100) COVID-19 cases were imported to 26 destination countries in Africa, with most of them (90%) predicted to have arrived between 7th January (±10 days) and 5th February (±3 days), and all of them predicted prior to the first case detections. We finally observed marked heterogeneities in expected imported cases across those locations. Our estimates shed light on shifting sources and local risks of case importation which can help focus surveillance efforts and guide public health policy during the final stages of the pandemic. We further provide a time window for the seeding of local epidemics in African locations, a key parameter for estimating expected outbreak size and burden on local health care systems and societies, that has yet to be defined in these locations.

17.
Nat Med ; 26(4): 506-510, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32284616

RESUMO

As of 29 February 2020 there were 79,394 confirmed cases and 2,838 deaths from COVID-19 in mainland China. Of these, 48,557 cases and 2,169 deaths occurred in the epicenter, Wuhan. A key public health priority during the emergence of a novel pathogen is estimating clinical severity, which requires properly adjusting for the case ascertainment rate and the delay between symptoms onset and death. Using public and published information, we estimate that the overall symptomatic case fatality risk (the probability of dying after developing symptoms) of COVID-19 in Wuhan was 1.4% (0.9-2.1%), which is substantially lower than both the corresponding crude or naïve confirmed case fatality risk (2,169/48,557 = 4.5%) and the approximator1 of deaths/deaths + recoveries (2,169/2,169 + 17,572 = 11%) as of 29 February 2020. Compared to those aged 30-59 years, those aged below 30 and above 59 years were 0.6 (0.3-1.1) and 5.1 (4.2-6.1) times more likely to die after developing symptoms. The risk of symptomatic infection increased with age (for example, at ~4% per year among adults aged 30-60 years).


Assuntos
Fatores Etários , Infecções por Coronavirus , Modelos Estatísticos , Pandemias , Pneumonia Viral , Índice de Gravidade de Doença , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Doenças Assintomáticas , Betacoronavirus , COVID-19 , Teste para COVID-19 , Criança , Pré-Escolar , China/epidemiologia , Técnicas de Laboratório Clínico , Infecções por Coronavirus/complicações , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/epidemiologia , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Mortalidade , Pneumonia Viral/complicações , Pneumonia Viral/diagnóstico , Pneumonia Viral/epidemiologia , Prognóstico , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Risco , SARS-CoV-2
18.
Lancet Infect Dis ; 20(7): 803-808, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32246905

RESUMO

BACKGROUND: The incidence of coronavirus disease 2019 (COVID-19) in Wuhan, China, has been estimated using imported case counts of international travellers, generally under the assumptions that all cases of the disease in travellers have been ascertained and that infection prevalence in travellers and residents is the same. However, findings indicate variation among locations in the capacity for detection of imported cases. Singapore has had very strong epidemiological surveillance and contact tracing capacity during previous infectious disease outbreaks and has consistently shown high sensitivity of case-detection during the COVID-19 outbreak. METHODS: We used a Bayesian modelling approach to estimate the relative capacity for detection of imported cases of COVID-19 for 194 locations (excluding China) compared with that for Singapore. We also built a simple mathematical model of the point prevalence of infection in visitors to an epicentre relative to that in residents. FINDINGS: The weighted global ability to detect Wuhan-to-location imported cases of COVID-19 was estimated to be 38% (95% highest posterior density interval [HPDI] 22-64) of Singapore's capacity. This value is equivalent to 2·8 (95% HPDI 1·5-4·4) times the current number of imported and reported cases that could have been detected if all locations had had the same detection capacity as Singapore. Using the second component of the Global Health Security index to stratify likely case-detection capacities, the ability to detect imported cases relative to Singapore was 40% (95% HPDI 22-67) among locations with high surveillance capacity, 37% (18-68) among locations with medium surveillance capacity, and 11% (0-42) among locations with low surveillance capacity. Treating all travellers as if they were residents (rather than accounting for the brief stay of some of these travellers in Wuhan) contributed modestly to underestimation of prevalence. INTERPRETATION: Estimates of case counts in Wuhan based on assumptions of 100% detection in travellers could have been underestimated by several fold. Furthermore, severity estimates will be inflated several fold since they also rely on case count estimates. Finally, our model supports evidence that underdetected cases of COVID-19 have probably spread in most locations around the world, with greatest risk in locations of low detection capacity and high connectivity to the epicentre of the outbreak. FUNDING: US National Institute of General Medical Sciences, and Fellowship Foundation Ramon Areces.


Assuntos
Betacoronavirus , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , Viagem , Teorema de Bayes , Viés , COVID-19 , China/epidemiologia , Interpretação Estatística de Dados , Humanos , Pandemias , Vigilância da População/métodos , Prevalência , SARS-CoV-2 , Singapura/epidemiologia
19.
Gac Sanit ; 32(1): 101-105, 2018.
Artigo em Espanhol | MEDLINE | ID: mdl-29157951

RESUMO

The recent Zika virus epidemic has highlighted the potential risk of introducing the arbovirosis to Europe, especially within the Mediterranean region where the vector, Aedes albopictus, has become established as an invasive species. In this context, a comprehensive evaluation of the risk of introducing the Zika virus and other mosquito-borne viruses of public health importance in Catalonia (Spain) was carried out. This article summarises the results of the preliminary assessment and the recommendations for the public health preparedness and response plan against the threat posed by these emerging diseases.


Assuntos
Aedes/virologia , Doenças Transmissíveis Emergentes/epidemiologia , Controle de Infecções/organização & administração , Mosquitos Vetores , Infecção por Zika virus/epidemiologia , Animais , Febre de Chikungunya/epidemiologia , Febre de Chikungunya/prevenção & controle , Febre de Chikungunya/transmissão , Doenças Transmissíveis Emergentes/prevenção & controle , Doenças Transmissíveis Emergentes/transmissão , Culex/virologia , Dengue/epidemiologia , Dengue/prevenção & controle , Dengue/transmissão , Surtos de Doenças , Humanos , Espécies Introduzidas , Região do Mediterrâneo , Saúde Pública , Medição de Risco , Espanha/epidemiologia , Doença Relacionada a Viagens , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/prevenção & controle , Febre do Nilo Ocidental/transmissão , Infecção por Zika virus/prevenção & controle , Infecção por Zika virus/transmissão
20.
Rev Panam Salud Publica ; 41: e62, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28902275

RESUMO

The emergence of chikungunya virus in the Americas means the affected population is at risk of developing severe, chronic, rheumatologic disease, even months after acute infection. Accurate diagnostic methods for past infections are essential for differential diagnosis and consequence management. This study evaluated three commercially-available chikungunya Immunoglobulin G immunoassays by comparing them to an in-house Enzyme-Linked ImmunoSorbent Assay conducted by the Centers for Disease Control and Prevention (Atlanta, Georgia, United States). Results showed sensitivity and specificity values ranging from 92.8% - 100% and 81.8% - 90.9%, respectively, with a significant number of false-positives ranging from 12.5% - 22%. These findings demonstrate the importance of evaluating commercial kits, especially regarding emerging infectious diseases whose medium and long-term impact on the population is unclear.


Assuntos
Anticorpos Antivirais/sangue , Febre de Chikungunya/sangue , Febre de Chikungunya/diagnóstico , Vírus Chikungunya/imunologia , Imunoglobulina G/sangue , Humanos , Imunoensaio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA