RESUMO
Multitarget compounds have emerged as promising drug candidates to cope with complex multifactorial diseases, like Alzheimer's disease (AD). Most multitarget compounds are designed by linking two pharmacophores through a tether chain (linked hybrids), which results in rather large molecules that are particularly useful to hit targets with large binding cavities, but at the expense of suffering from suboptimal physicochemical/pharmacokinetic properties. Molecular size reduction by removal of superfluous structural elements while retaining the key pharmacophoric motifs may represent a compromise solution to achieve both multitargeting and favorable physicochemical/PK properties. Here, we report the stepwise structural simplification of the dihydroxyanthraquinone moiety of a rhein-huprine hybrid lead by hydroxy group removal-ring contraction-ring opening-ring removal, which has led to new analogs that retain or surpass the potency of the lead on its multiple AD targets while exhibiting more favorable drug metabolism and pharmacokinetic (DMPK) properties and safety profile. In particular, the most simplified acetophenone analog displays dual nanomolar inhibition of human acetylcholinesterase and butyrylcholinesterase (IC50 = 6 nM and 13 nM, respectively), moderately potent inhibition of human BACE-1 (48% inhibition at 15 µM) and Aß42 and tau aggregation (73% and 68% inhibition, respectively, at 10 µM), favorable in vitro brain permeation, higher aqueous solubility (18 µM) and plasma stability (100/96/86% remaining in human/mouse/rat plasma after 6 h incubation), and lower acute toxicity in a model organism (zebrafish embryos; LC50 >> 100 µM) than the initial lead, thereby confirming the successful lead optimization by structural simplification.
RESUMO
Monacolin K (MK), in red yeast rice (RYR) in the forms of lactone (LMK) and hydroxy acid (AMK), is known for its anti-hypercholesterolemic activity. Under the rising demand for natural bioactive molecules, we present a green ultrasound-assisted extraction (UAE) optimization study for MK in RYR. The development and validation of a fast, sensitive, selective, reproducible, and accurate ultra-high-performance liquid chromatography (UHPLC) method coupled to diode array detection for LMK and AMK allowed us to evaluate the MK recovery in different extract media. Firstly, the ethanol comparability to acetonitrile was assessed (recovery of 80.7 ± 0.1% for ethanol and 85.5 ± 0.2% for acetonitrile). Then, water/ethanol mixtures, with decreasing percentages of organic solvent, were tested by modulating temperature and extraction times. Water extractions at 80 °C for 10 min produced MK yield > 85%. Thus, UAE conditions were optimized by a DOE study using a water-based formulation (mouthwash). The optimal total MK extraction yield (86.6 ± 0.4%) was found under the following conditions: 80 °C, 45 min, 5 mg mL-1 (RYR powder/solvent). Therefore, the new single-process green approach allowed the simultaneous direct extraction of MK and mouthwash enrichment (MK concentration = 130.0 ± 0.6 µg mL-1), which might be tested for the prevention and treatment of periodontitis or oral candidiasis.
RESUMO
Alzheimer's disease (AD) and cancer are among the most devastating diseases of the 21st century. Although the clinical manifestations are different and the cellular mechanisms underlying the pathologies are opposite, there are different classes of molecules that are effective in both diseases, such as quinone-based compounds and histone deacetylase inhibitors (HDACIs). Herein, we investigate the biological effects of a series of compounds built to exploit the beneficial effects of quinones and histone deacetylase inhibition (compounds 1-8). Among the different compounds, compound 6 turned out to be a potent cytotoxic agent in SH-SY5Y cancer cell line, with a half maximal inhibitory concentration (IC50) value lower than vorinostat and a pro-apoptotic activity. On the other hand, compound 8 was nontoxic up to the concentration of 100 µM and was highly effective in stimulating the proliferation of neural precursor cells (NPCs), as well as inducing differentiation into neurons, at low micromolar concentrations. In particular, it was able to induce NPC differentiation solely towards a neuronal-specific phenotype, without affecting glial cells commitment.
RESUMO
Despite recent FDA approvals, Alzheimer's disease (AD) still represents an unmet medical need. Among the different available therapeutic approaches, the development of multitarget molecules represents one of the most widely pursued. In this work, we present a second generation of dual ligands directed toward highly networked targets that are deeply involved in the development of the disease, namely, Histone Deacetylases (HDACs) and Glycogen Synthase Kinase 3ß (GSK-3ß). The synthesized compounds are highly potent GSK-3ß, HDAC2, and HDAC6 inhibitors with IC50 values in the nanomolar range of concentrations. Among them, compound 4 inhibits histone H3 and tubulin acetylation at 0.1 µM concentration, blocks hyperphosphorylation of tau protein, and shows interesting immunomodulatory and neuroprotective properties. These features, together with its ability to cross the blood-brain barrier and its favorable physical-chemical properties, make compound 4 a promising hit for the development of innovative disease-modifying agents.
Assuntos
Doença de Alzheimer , Glicogênio Sintase Quinase 3 beta , Inibidores de Histona Desacetilases , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Humanos , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Desacetilase 6 de Histona/antagonistas & inibidores , Desacetilase 6 de Histona/metabolismo , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Proteínas tau/metabolismo , Histona Desacetilases/metabolismo , Fosforilação/efeitos dos fármacos , Acetilação , Histona Desacetilase 2/metabolismo , Histona Desacetilase 2/antagonistas & inibidoresRESUMO
Agri-food by-products, obtained as waste from the food industry, negatively impact the global economy and the environment. In order to valorize waste materials from fruit juices and tomato sauces as upcycled materials rich in health-promoting compounds, they were characterized in terms of polyphenolic and protein content. The results obtained were compared with those collected for their final products. The recovery of polyphenols was performed via ultrasound-assisted extraction (UAE). A high-performance liquid chromatography-diode array detector (HPLC-DAD) method was developed and validated to depict the quali-quantitative polyphenolic profile of both the by-products and the final products. The antioxidant capacity of the resulting extracts was characterized by UV-Vis spectrophotometric assays in terms of total phenolic content (TPC) and total antioxidant status (TAS). Moreover, the protein content was assessed with the Kjeldahl method too. The results highlighted a significant quantity of polyphenols remaining in peach, apricot, and apple by-products, which were able to exert an antioxidant activity (in the range of 4.95 ± 5.69 × 10-1 to 7.06 ± 7.96 × 10-1 mmol Trolox 100 g-1 of dry weight (DW) sample). Conversely, the tomato by-products were highly rich in proteins (11.0 ± 2.00 to 14.4 ± 2.60 g of proteins 100 g-1 DW). The results proved that all by-products may potentially be sustainable ingredients with nutritional and functional value in a circular bio-economy prospect.
RESUMO
In order to find a correlation between Fentanyl action on pain and inter-individual variability in different cancer patients, the pharmacokinetic characterization of the drug becomes essential. Therefore, a gas chromatographic-mass spectrometric (GC-MS) in SIM mode analytical procedure has been developed and validated for the determination of Fentanyl in human blood. The sample preparation consisted of a liquid-liquid extraction (LLE) from whole blood. The analysis were carried out with Agilent 7820 A series gas chromatograph equipped with a 5977E series mass selective single quadrupole detector (MSD) with an electron impact (EI) source (70 eV), under a temperature gradient elution. The limit of detection (LoD) and the limit of quantification (LoQ) values were found to be 5.60E-02 ± 3.50E-02 ng mL-1 and 1.86E-01 ± 1.18E-01 ng mL-1 respectively. The developed method was found selective and sensitive and therefore suitable for a fast determination of Fentanyl in human blood and for its pharmacokinetic characterization. Blood samples from 31 cancer patients treated with transdermal Fentanyl (doses in the range of 12-100 µg h-1) were collected at fixed intervals during an overall exposure time of 72 h. The analysis of data and the pharmacokinetic parameters revealed dissimilar pharmacokinetic profiles in the patients examined. Patients were therefore grouped in three categories representing the different trends observed: high, medium and slow responders. These preliminary data provided significant outcomes for a correlation to clinical response.
Assuntos
Fentanila , Neoplasias , Fentanila/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Limite de Detecção , Extração Líquido-Líquido , Neoplasias/tratamento farmacológicoRESUMO
Microalgae are well-known for their content of bioactive molecules such as pigments, proteins, fatty acids, polysaccharides, vitamins and antioxidants, all of which are of great interest in the preparation of a wide range of products such as food, cosmetics and nutraceuticals. The purpose of this project was the analytical characterization of commercial dry microalgal biomass: four samples of Chlorella and five of Spirulina were analysed in order to highlight their content in terms of micro/macro nutrients. The research was oriented towards the development and validation of accurate, fast and reproducible methods for the nutritional assessment of algal biomasses, aiming to provide a guiding methodology. The lipid profiles of algal matrixes were analysed for the content of saturated, unsaturated and polyunsaturated fatty acids. The process was divided into two phases: firstly, the extraction and determination of the total lipids and pigment content; secondly, the trans-esterification of the extracted lipid-pigment portion in order to analyse fatty acid methyl esters (FAMEs) with a GC-MS method. A fingerprinting of MUFAs and PUFAs was obtained regarding microalgae species. The determination of total carotenoids and chlorophylls content in the lipid extracts was evaluated through a fast UV-Vis spectrophotometric analysis, which was validated by a new HPLC-DAD analysis. Furthermore, the total antioxidant activity of each lipid extract was determined along with the determination of the microalgae protein content. Then, with the aid of the principal component analysis (PCA) plots, the two microalgae were clustered in terms of their micro/macro nutrients, for differentiating their properties. Spirulina, resulting to have a greater antioxidant activity, supposedly due to a higher content in pigments and higher protein concentration, could be suggested for an appropriate diet for sporting people. Chlorella, instead, showed a more balanced profile of PUFAs and MUFAs and its use could be suggested for cosmetics and vegan diets. This paper puts forward an overall analytical approach, sustained by a multivariate analysis, for emphasising content differences and activity of two different microalgae strains, in order to underline specific claims for each class, addressed to defined final users.
Assuntos
Chlorella , Microalgas , Spirulina , Antioxidantes/metabolismo , Chlorella/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados , Humanos , Microalgas/metabolismoRESUMO
Currently Alzheimer's Disease (AD) pathological pathways, which lead to cell death and dementia, are not completely well-defined; in particular, the lipid changes in brain tissues that begin years before AD symptoms. Due to the central role of the amyloid aggregation process in the early phase of AD pathogenesis, we aimed at developing a lipidomic approach to evaluate the amyloid toxic effects on differentiated human neuroblastoma derived SH-SY5Y cells. First of all, this work was performed to highlight qualitative and relative quantitative lipid variations in connection with amyloid toxicity. Then, with an open outcome, the study was focused to find out some new lipid-based biomarkers that could result from the interaction of amyloid peptide with cell membrane and could justify neuroblastoma cells neurotoxicity. Hence, cells were treated with increasing concentration of Aß1-42 at different times, then the lipid extraction was carried out by protein precipitation protocol with 2-propanol-water (90:10 v/v). The LC-MS analysis of samples was performed by a RP-UHPLC system coupled with a quadrupole-time-of-flight mass spectrometer in comprehensive data - independent SWATH acquisition mode. Data processing was achieved by MS-DIAL. Each lipid class profile in SH-SY5Y cells treated with Aß1-42 was compared to the one obtained for the untreated cells to identify (and relatively quantify) some altered species in various lipid classes. This approach was found suitable to underline some peculiar lipid alterations that might be correlated to different Aß1-42 aggregation species and to explore the cellular response mechanisms to the toxic stimuli. The in vitro model presented has provided results that coincide with the ones in literature obtained by lipidomic analysis on cerebrospinal fluid and plasma of AD patients. Therefore, after being validated, this method could represent a way for the preliminary identification of potential biomarkers that could be researched in biological samples of AD patients.
Assuntos
Doença de Alzheimer , Neuroblastoma , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Linhagem Celular Tumoral , Humanos , Lipidômica , Lipídeos/toxicidade , Fragmentos de Peptídeos/toxicidadeRESUMO
INTRODUCTION: The different and relevant roles of GSK-3 are of critical importance since they deal with development, metabolic homeostasis, cell polarity and fate, neuronal growth and differentiation as well as modulation of apoptotic potential. Given their involvement with different diseases, many investigations have been undertaken with the aim of discovering new and promising inhibitors for this target. In this context, atural products represent an invaluable source of active molecules. AREAS COVERED: In order to overcome issues such as poor pharmacokinetic properties or efficacy, frequently associated with natural compounds, different GSK-3ß inhibitors belonging to alkaloid or flavonoid classes have been subjected to structural modifications in order to obtain more potent and safer compounds. Herein, the authors report the results obtained from studies where natural compounds have been used as hits with the aim of providing new kinase inhibitors endowed with a better inhibitory profile. EXPERT OPINION: Structurally modification of natural scaffolds is a proven approach taking advantage of their pharmacological characteristics. Indeed, whatever the strategy adopted is and, despite the limitations associated with the structural complexity of natural products, the authors recommend the use of natural scaffolds as a promising strategy for the discovery of novel and potent GSK-3ß inhibitors.
Assuntos
Antineoplásicos , Produtos Biológicos , Produtos Biológicos/farmacologia , Inibidores Enzimáticos/farmacologia , Quinase 3 da Glicogênio Sintase , Glicogênio Sintase Quinase 3 beta , Humanos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologiaRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Alzheimer's disease is the most common form of dementia, but its treatment options remain few and ineffective. To find new therapeutic strategies, natural products have gained interest due to their neuroprotective potential, being able to target different pathological hallmarks associated with this disorder. Several plant species are traditionally used due to their empirical neuroprotective effects and it is worth to explore their mechanism of action. AIM OF THE STUDY: This study intended to explore the neuroprotective potential of seven traditional medicinal plants, namely Scutellaria baicalensis, Ginkgo biloba, Hypericum perforatum, Curcuma longa, Lavandula angustifolia, Trigonella foenum-graecum and Rosmarinus officinalis. The safety assessment with reference to pesticides residues was also aimed. MATERIALS AND METHODS: Decoctions prepared from these species were chemically characterized by HPLC-DAD and screened for their ability to scavenge four different free radicals (DPPHâ¢, ABTSâ¢+, O2â¢â and â¢NO) and to inhibit enzymes related to neurodegeneration (cholinesterases and glycogen synthase kinase-3ß). Cell viability through MTT assay was also evaluated in two different brain cell lines, namely non-tumorigenic D3 human brain endothelial cells (hCMEC/D3) and NSC-34 motor neurons. Furthermore, and using GC, 21 pesticides residues were screened. RESULTS: Regarding chemical composition, chromatographic analysis revealed the presence of several flavonoids, phenolic acids, curcuminoids, phenolic diterpenoids, one alkaloid and one naphthodianthrone in the seven decoctions. All extracts were able to scavenge free radicals and were moderate glycogen synthase kinase-3ß inhibitors; however, they displayed weak to moderate acetylcholinesterase and butyrylcholinesterase inhibition. G. biloba and L. angustifolia decoctions were the less cytotoxic to hCMEC/D3 and NSC-34 cell lines. No pesticides residues were detected. CONCLUSIONS: The results extend the knowledge on the potential use of plant extracts to combat multifactorial disorders, giving new insights into therapeutic avenues for Alzheimer's disease.
Assuntos
Doença de Alzheimer/patologia , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Colinesterases/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sequestradores de Radicais Livres/metabolismo , Glicogênio Sintase/efeitos dos fármacos , Humanos , Medicina Tradicional Chinesa/métodos , Fármacos Neuroprotetores/efeitos adversos , Resíduos de Praguicidas/análise , Extratos Vegetais/efeitos adversosRESUMO
Starting from six potential hits identified in a virtual screening campaign directed to a cryptic pocket of BACE-1, at the edge of the catalytic cleft, we have synthesized and evaluated six hybrid compounds, designed to simultaneously reach BACE-1 secondary and catalytic sites and to exert additional activities of interest for Alzheimer's disease (AD). We have identified a lead compound with potent in vitro activity towards human BACE-1 and cholinesterases, moderate Aß42 and tau antiaggregating activity, and brain permeability, which is nontoxic in neuronal cells and zebrafish embryos at concentrations above those required for the in vitro activities. This compound completely restored short- and long-term memory in a mouse model of AD (SAMP8) relative to healthy control strain SAMR1, shifted APP processing towards the non-amyloidogenic pathway, reduced tau phosphorylation, and increased the levels of synaptic proteins PSD95 and synaptophysin, thereby emerging as a promising disease-modifying, cognition-enhancing anti-AD lead.
Assuntos
Doença de Alzheimer/tratamento farmacológico , Aminoquinolinas/farmacologia , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Fármacos Neuroprotetores/farmacologia , Doença de Alzheimer/metabolismo , Aminoquinolinas/síntese química , Aminoquinolinas/química , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Compostos Heterocíclicos de 4 ou mais Anéis/síntese química , Compostos Heterocíclicos de 4 ou mais Anéis/química , Humanos , Simulação de Dinâmica Molecular , Estrutura Molecular , Fármacos Neuroprotetores/síntese química , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Proteínas tau/antagonistas & inibidores , Proteínas tau/metabolismoRESUMO
Multitarget-directed ligands (MTDLs) are considered a promising therapeutic strategy to address the multifactorial nature of Alzheimer's disease (AD). Novel MTDLs have been designed as inhibitors of human acetylcholinesterases/butyrylcholinesterases, monoamine oxidase A/B, and glycogen synthase kinase 3ß and as calcium channel antagonists via the Biginelli multicomponent reaction. Among these MTDLs, (±)-BIGI-3h was identified as a promising new hit compound showing in vitro balanced activities toward the aforementioned recognized AD targets. Additional in vitro studies demonstrated antioxidant effects and brain penetration, along with the ability to inhibit the aggregation of both τ protein and ß-amyloid peptide. The in vivo studies have shown that (±)-BIGI-3h (10 mg/kg intraperitoneally) significantly reduces scopolamine-induced cognitive deficits.
Assuntos
Doença de Alzheimer , Doença de Alzheimer/tratamento farmacológico , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Canais de Cálcio , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Glicogênio Sintase Quinase 3 beta , Humanos , Ligantes , Monoaminoxidase/metabolismoRESUMO
The combination of the scaffolds of the cholinesterase inhibitor huprine Y and the antioxidant capsaicin results in compounds with nanomolar potencies toward human acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) that retain or improve the antioxidant properties of capsaicin. Crystal structures of their complexes with AChE and BChE revealed the molecular basis for their high potency. Brain penetration was confirmed by biodistribution studies in C57BL6 mice, with one compound (5i) displaying better brain/plasma ratio than donepezil. Chronic treatment of 10 month-old APP/PS1 mice with 5i (2 mg/kg, i.p., 3 times per week, 4 weeks) rescued learning and memory impairments, as measured by three different behavioral tests, delayed the Alzheimer-like pathology progression, as suggested by a significantly reduced Aß42/Aß40 ratio in the hippocampus, improved basal synaptic efficacy, and significantly reduced hippocampal oxidative stress and neuroinflammation. Compound 5i emerges as an interesting anti-Alzheimer lead with beneficial effects on cognitive symptoms and on some underlying disease mechanisms.
Assuntos
Acetilcolinesterase/metabolismo , Antioxidantes/metabolismo , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Acetilcolinesterase/química , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/metabolismo , Sítios de Ligação , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Butirilcolinesterase/química , Inibidores da Colinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Estresse Oxidativo/efeitos dos fármacos , Relação Estrutura-Atividade , Distribuição TecidualRESUMO
Alzheimer's disease (AD), like other multifactorial diseases, is the result of a systemic breakdown of different physiological networks. As result, several lines of evidence suggest that it could be more efficiently tackled by molecules directed toward different dysregulated biochemical targets or pathways. In this context, the selection of targets to which the new molecules will be directed is crucial. For years, the design of such multitarget-directed ligands (MTDLs) has been based on the selection of main targets involved in the "cholinergic" and the "ß-amyloid" hypothesis. Recently, there have been some reports on MTDLs targeting the glycogen synthase kinase 3ß (GSK-3ß) enzyme, due to its appealing properties. Indeed, this enzyme is involved in tau hyperphosphorylation, controls a multitude of CNS-specific signaling pathways, and establishes strict connections with several factors implicated in AD pathogenesis. In the present Miniperspective, we will discuss the reasons behind the development of GSK-3ß-directed MTDLs and highlight some of the recent efforts to obtain these new classes of MTDLs as potential disease-modifying agents.
Assuntos
Doença de Alzheimer/tratamento farmacológico , Descoberta de Drogas , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/química , Humanos , FosforilaçãoRESUMO
Drugs targeting human topoisomerase II (topoII) are used in clinical practice since decades. Nevertheless, there is an urgent need for new and safer topoII inhibitors due to the emergence of secondary malignancies and the appearance of resistance mechanisms upon treatment with topoII-targeted anticancer drugs. In the present investigation, we report the discovery of a new topoII inhibitor, whose design was based on the structure of the natural product trypthantrin, a natural alkaloid containing a basic indoloquinazoline moiety. This new topoII inhibitor, here numbered compound 5, is found to inhibit topoII with an IC50 of 26.6 ± 4.7 µM. Notably, compound 5 is more potent than the template compound trypthantrin, and even than the widely used topoII-targeted clinical drug etoposide. In addition, compound 5 also exhibits high water solubility, and a promising antiproliferative activity on different tumor cell lines such as acute leukemia, colon, and breast cancer. In light of these results, compound 5 represents a promising lead for developing new topoII inhibitors as anti-cancer therapeutic agents.
Assuntos
Antineoplásicos/farmacologia , DNA Topoisomerases Tipo II/metabolismo , Descoberta de Drogas , Inibidores da Topoisomerase II/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química , Células Tumorais CultivadasRESUMO
Oxidative stress is a major pathogenic factor in Alzheimer's disease, but it should not be tackled alone rather together with other key targets to derive effective treatments. The combination of the scaffold of the polar antioxidant lead 7-methoxy-2,2-dimethylchroman-6-ol (CR-6) with that of the lipophilic cholinesterase inhibitor 6-chlorotacrine results in compounds with favorable brain permeability and multiple activities in vitro (acetylcholinesterase, butyrylcholinesterase, ß-site amyloid precursor protein (APP) cleaving enzyme-1 (BACE-1), and Aß42 and tau aggregation inhibition). In in vivo studies on wild-type and APP/presenilin 1 (PS1) mice, two selected compounds were well tolerated and led to positive trends, albeit statistically nonsignificant in some cases, on memory performance, amyloid pathology (reduced amyloid burden and potentiated non-amyloidogenic APP processing), and oxidative stress (reduced cortical oxidized proteins and increased antioxidant enzymes superoxide dismutase 2 (SOD2), catalase, glutathione peroxidase 1 (GPX1), and heme oxygenase 1 (Hmox1) and transcription factor nuclear factor-erythroid 2-related factor 2 (Nrf2)). These compounds emerge as interesting brain-permeable multitarget compounds, with a potential as anti-Alzheimer agents beyond that of the original lead CR-6.
Assuntos
Doença de Alzheimer/tratamento farmacológico , Antioxidantes/química , Antioxidantes/farmacologia , Benzopiranos/química , Benzopiranos/farmacologia , Terapia de Alvo Molecular , Doença de Alzheimer/metabolismo , Animais , Antioxidantes/metabolismo , Antioxidantes/uso terapêutico , Benzopiranos/metabolismo , Benzopiranos/uso terapêutico , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Humanos , Camundongos , Simulação de Dinâmica Molecular , Estresse Oxidativo/efeitos dos fármacos , Permeabilidade , Conformação ProteicaRESUMO
A novel series of aromatic esters (1a-1m) related to the Amaryllidaceae alkaloid (AA) haemanthamine were designed, synthesized and tested in vitro with particular emphasis on the treatment of neurodegenerative diseases. Some of the synthesized compounds revealed promising acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory profile. Significant human AChE (hAChE) inhibition was demonstrated by 11-O-(3-nitrobenzoyl)haemanthamine (1j) with IC50value of 4.0 ± 0.3 µM. The strongest human BuChE (hBuChE) inhibition generated 1-O-(2-methoxybenzoyl)haemanthamine (1g) with IC50 value 3.3 ± 0.4 µM. Moreover, 11-O-(2-chlorbenzoyl)haemanthamine (1m) was able to inhibit both enzymes in dose-dependent manner. The mode of hAChE and hBuChE inhibition was minutely inspected using enzyme kinetic analysis in tandem with in silico experiments, the latter elucidating crucial interaction in 1j-, 1m-hAChE and 1g-, 1m-hBuChE complexes. The blood-brain barrier (BBB) permeability was investigated applying the parallel artificial membrane permeation assay (PAMPA) to predict the CNS availability of the compounds.
Assuntos
Alcaloides de Amaryllidaceae/química , Amaryllidaceae/química , Ésteres/química , Fenantridinas/química , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Amaryllidaceae/metabolismo , Alcaloides de Amaryllidaceae/metabolismo , Alcaloides de Amaryllidaceae/uso terapêutico , Sítios de Ligação , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/metabolismo , Inibidores da Colinesterase/uso terapêutico , Humanos , Cinética , Simulação de Acoplamento Molecular , Fenantridinas/metabolismo , Fenantridinas/uso terapêutico , Relação Estrutura-AtividadeRESUMO
Despite the constant progress in the understanding of the etiopathogenesis of Alzheimer's disease (AD) over the last 50 years, just four long-standing drugs are currently used for AD therapy. This article reviews the analytical methodologies developed and applied in the last five years to address the early-stage tasks of the AD drug discovery process: the fast selection of active compounds (hits) and the comprehension of the ligand binding mechanism of the compound chosen to be the lead in the forthcoming development. The reviewed analytical methodologies face the most investigated pharmacological protein targets (amyloids, secretases, kinases, cholinesterases) and specific receptor- and enzyme-mediated effects in neurotransmission, neuroprotection and neurodegeneration. Some of these methodologies are noteworthy for their use in middle/high-throughput screening campaigns during hit selection (e.g. surface plasmon resonance biosensing, fluorescence resonance energy transfer assays), whereas some others (circular dichroism and nuclear magnetic resonance spectroscopies, ion mobility-mass spectrometry) can provide in-depth information about the structure, conformation and ligand binding properties of target proteins.
Assuntos
Doença de Alzheimer/tratamento farmacológico , Técnicas de Química Analítica/métodos , Descoberta de Drogas/métodos , Animais , Ensaios de Triagem em Larga Escala , HumanosRESUMO
Glycogen synthase kinase-3ß (GSK3ß) is involved in many pathological conditions and represents an attractive drug target. We previously reported dual GSK3ß/p38α mitogen-activated protein kinase inhibitors and identified N-(4-(4-(4-fluorophenyl)-2-methyl-1H-imidazol-5-yl)pyridin-2-yl)cyclopropanecarboxamide (1) as a potent dual inhibitor of both target kinases. In this study, we aimed to design selective GSK3ß inhibitors based on our pyridinylimidazole scaffold. Our efforts resulted in several novel and potent GSK3ß inhibitors with IC50 values in the low nanomolar range. 5-(2-(Cyclopropanecarboxamido)pyridin-4-yl)-4-cyclopropyl-1H-imidazole-2-carboxamide (6g) displayed very good kinase selectivity as well as metabolical stability and inhibited GSK3ß activity in neuronal SH-SY5Y cells. Interestingly, we observed the importance of the 2-methylimidazole's tautomeric state for the compound activity. Finally, we reveal how this crucial tautomerism effect is surmounted by imidazole-2-carboxamides, which are able to stabilize the binding via enhanced water network interactions, regardless of their tautomeric state.
RESUMO
[This corrects the article DOI: 10.1021/acsmedchemlett.8b00507.].