Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Phys Chem A ; 128(43): 9398-9411, 2024 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-39432887

RESUMO

Molecular excitons play a major role within dye aggregates and hold significant potential for (opto)electronic and photovoltaic applications. Numerous studies have documented alterations in the spectral properties of dye homoaggregates, but only limited work has been reported for heteroaggregates. In this article, dimeric dye stacks were constructed from azobenzene-like dyes with identical or distinct structures, and their excitonic features were computationally investigated. Our results show that strong exciton coupling is not limited to identical chromophores, as often assumed, based on a recently made available Frenkel Exciton Hamiltonian and multiconfigurational plus second-order perturbation theory energetics methodology. Heteroaggregate stacks were found to exhibit different absorption features from the corresponding interacting monomers, indicating considerable coupling interactions between units. We analyzed how such coupling may vary according to various aspects, such as the relative positions of the interacting monomers or the differences in their energetics. Such qualitative and semiquantitative analyses allow the evaluation of the excitonic behavior of these dye aggregates to encourage further efforts toward a deeper understanding of the excitonic properties of tailored dye heteroaggregate systems.

2.
ACS Omega ; 9(5): 5246-5254, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38343919

RESUMO

Oxygenic photosynthesis begins in the reaction center (RC) of the protein complex photosystem II (PSII). PSII has an intriguing, nearly symmetrical arrangement of cofactors within its RC. Despite this symmetry, evolution has favored only one of the two branches of PSII for efficient electron transfer. Current spectroscopic experiments explore the electronic dynamics during the picoseconds after energy has entered the RC and until the electron transfers to the pheophytin of the first branch. We present state-of-the-art multiconfigurational multireference calculations of the excitation energies or site energies of the four chlorophyll pigments of the RC without protein environment considerations. We see a significant variation that breaks the apparent symmetry of the RC. The inner chlorophyll of the productive RC branch possessed the lowest excitation energy of the four central chlorophylls. Our computational method used here is expensive; thus, geometry optimization of the crystal structure is currently not possible. In future work, charge and energy dynamics within the RC will be included as well as a dynamic description of the protein environment and its coupling to the RC. Other state-of-the-art studies of the RC, at lower levels of electronic structure, include a static treatment of the protein environment. These almost unanimously report that the outer chlorophyll of the active branch had the lowest excitation energy. Future work is needed to reconcile this discrepancy.

3.
J Chem Theory Comput ; 19(20): 6933-6991, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37216210

RESUMO

The developments of the open-source OpenMolcas chemistry software environment since spring 2020 are described, with a focus on novel functionalities accessible in the stable branch of the package or via interfaces with other packages. These developments span a wide range of topics in computational chemistry and are presented in thematic sections: electronic structure theory, electronic spectroscopy simulations, analytic gradients and molecular structure optimizations, ab initio molecular dynamics, and other new features. This report offers an overview of the chemical phenomena and processes OpenMolcas can address, while showing that OpenMolcas is an attractive platform for state-of-the-art atomistic computer simulations.

4.
J Chem Theory Comput ; 19(10): 2918-2928, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37115036

RESUMO

We present an implementation of the Frenkel exciton model into the OpenMolcas program package enabling calculations of collective electronic excited states of molecular aggregates based on a multiconfigurational wave function description of the individual monomers. The computational protocol avoids using diabatization schemes and, thus, supermolecule calculations. Additionally, the use of the Cholesky decomposition of the two-electron integrals entering pair interactions enhances the efficiency of the computational scheme. The application of the method is exemplified for two test systems, that is, a formaldehyde oxime and a bacteriochlorophyll-like dimer. For the sake of comparison with the dipole approximation, we restrict our considerations to situations where intermonomer exchange can be neglected. The protocol is expected to be beneficial for aggregates composed of molecules with extended π systems, unpaired electrons such as radicals or transition metal centers, where it should outperform widely used methods based on time-dependent density functional theory.

5.
J Chem Theory Comput ; 19(1): 293-310, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36516450

RESUMO

We present a computational protocol for the fast and automated screening of excited-state hybrid quantum mechanics/molecular mechanics (QM/MM) models of rhodopsins to be used as fluorescent probes based on the automatic rhodopsin modeling protocol (a-ARM). Such "a-ARM fluorescence screening protocol" is implemented through a general Python-based driver, PyARM, that is also proposed here. The implementation and performance of the protocol are benchmarked using different sets of rhodopsin variants whose absorption and, more relevantly, emission spectra have been experimentally measured. We show that, despite important limitations that make unsafe to use it as a black-box tool, the protocol reproduces the observed trends in fluorescence and it is capable of selecting novel potentially fluorescent rhodopsins. We also show that the protocol can be used in mechanistic investigations to discern fluorescence enhancement effects associated with a near degeneracy of the S1/S2 states or, alternatively, with a barrier generated via coupling of the S0/S1 wave functions.


Assuntos
Corantes Fluorescentes , Rodopsina , Modelos Moleculares , Teoria Quântica
6.
Nat Commun ; 13(1): 6432, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36307417

RESUMO

The lack of a theory capable of connecting the amino acid sequence of a light-absorbing protein with its fluorescence brightness is hampering the development of tools for understanding neuronal communications. Here we demonstrate that a theory can be established by constructing quantum chemical models of a set of Archaerhodopsin reporters in their electronically excited state. We found that the experimentally observed increase in fluorescence quantum yield is proportional to the computed decrease in energy difference between the fluorescent state and a nearby photoisomerization channel leading to an exotic diradical of the protein chromophore. This finding will ultimately support the development of technologies for searching novel fluorescent rhodopsin variants and unveil electrostatic changes that make light emission brighter and brighter.


Assuntos
Optogenética , Rodopsina , Fluorescência , Rodopsina/química , Eletricidade Estática , Modelos Químicos , Teoria Quântica
7.
Top Curr Chem (Cham) ; 380(3): 21, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35291019

RESUMO

In recent years, photoactive proteins such as rhodopsins have become a common target for cutting-edge research in the field of optogenetics. Alongside wet-lab research, computational methods are also developing rapidly to provide the necessary tools to analyze and rationalize experimental results and, most of all, drive the design of novel systems. The Automatic Rhodopsin Modeling (ARM) protocol is focused on providing exactly the necessary computational tools to study rhodopsins, those being either natural or resulting from mutations. The code has evolved along the years to finally provide results that are reproducible by any user, accurate and reliable so as to replicate experimental trends. Furthermore, the code is efficient in terms of necessary computing resources and time, and scalable in terms of both number of concurrent calculations as well as features. In this review, we will show how the code underlying ARM achieved each of these properties.


Assuntos
Rodopsina , Rodopsina/metabolismo
8.
Photochem Photobiol ; 97(2): 243-269, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33369749

RESUMO

This perspective article highlights the challenges in the theoretical description of photoreceptor proteins using multiscale modeling, as discussed at the CECAM workshop in Tel Aviv, Israel. The participants have identified grand challenges and discussed the development of new tools to address them. Recent progress in understanding representative proteins such as green fluorescent protein, photoactive yellow protein, phytochrome, and rhodopsin is presented, along with methodological developments.


Assuntos
Proteínas de Bactérias/química , Proteínas de Fluorescência Verde/química , Modelos Moleculares , Fotorreceptores Microbianos/química , Fitocromo/química , Rodopsina/química , Distribuição de Poisson , Teoria Quântica , Eletricidade Estática
9.
J Chem Phys ; 152(21): 214117, 2020 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32505150

RESUMO

MOLCAS/OpenMolcas is an ab initio electronic structure program providing a large set of computational methods from Hartree-Fock and density functional theory to various implementations of multiconfigurational theory. This article provides a comprehensive overview of the main features of the code, specifically reviewing the use of the code in previously reported chemical applications as well as more recent applications including the calculation of magnetic properties from optimized density matrix renormalization group wave functions.

10.
J Chem Inf Model ; 60(3): 1481-1493, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-31909998

RESUMO

This article introduces Web-ARM, a specialized tool, online available, designed to build quantum mechanical/molecular mechanical models of rhodopsins, a widely spread family of light-responsive proteins. Web-ARM allows the rapidly building of models of rhodopsins with a documented quality and the prediction of trends in UV-vis absorption maximum wavelengths, based on their excitation energies computed at the CASPT2//CASSCF/Amber level of theory. Web-ARM builds upon the recently reported, python-based a-ARM protocol [J. Chem. Theory Comput., 2019, 15, 3134-3152] and, as such, necessitates only a crystallographic structure or a comparative model in PDB format and a very basic knowledge of the studied rhodopsin system. The user-friendly web interface uses such input to generate congruous, gas-phase models of rhodopsins and, if requested, their mutants. We present two possible applications of Web-ARM, which showcase how the interface can be employed to assist both research and educational activities in fields at the interface between chemistry and biology. The first application shows how, through Web-ARM, research projects (e.g., rhodopsin and rhodopsin mutant screening) can be carried out in significantly less time with respect to using the required computational photochemistry tools via a command line. The second application documents the use of Web-ARM in a real-life educational/training activity, through a hands-on experience illustrating the concepts of rhodopsin color tuning.


Assuntos
Teoria Quântica , Rodopsina , Internet , Modelos Moleculares
11.
J Phys Chem A ; 123(25): 5283-5292, 2019 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-31242736

RESUMO

Light-harvesting systems 2 and 3 (LH2 and LH3) act as antennas for the initial light capture by photosynthetic purple bacteria, thus initiating the conversion of solar energy into chemical energy. The main absorbers are carotenoids and bacteriochlorophylls (BChls), which harvest different parts of the solar spectrum. The first two optical transitions in BChl produce the Q y and Q x absorption bands. The large size of BChl molecules has prevented accurate computational determination of the electronic structures for the relevant states, until we recently succeeded in obtaining the excitation energies and transition dipole moments of the first (Q y) transition for all BChls in LH2 and LH3 using multi-state multiconfigurational second-order perturbation theory calculations. In this work, we go one step further, compute the corresponding values for the Q x transition, in line with previous work [ J. Am. Chem. Soc . 2017 , 139 , 7558 - 7567 ], and compare and assess our data against excitation energies obtained through time-dependent density functional theory methods. Interestingly, we find that the two transitions respond differently to BChls' geometrical factors, such as the macrocycle ring curvature and the dihedral torsion of the acetyl moiety. These findings will aid the unraveling of structure-function relationships for absorption and energy transfer processes in purple bacteria, and once again this demonstrates the viability of multireference quantum chemical methods as computational tools for the photophysics of biomolecules.


Assuntos
Bacterioclorofila A/química , Complexos de Proteínas Captadores de Luz/química , Bacterioclorofila A/efeitos da radiação , Teoria da Densidade Funcional , Transferência de Energia , Luz , Complexos de Proteínas Captadores de Luz/efeitos da radiação , Modelos Químicos , Conformação Proteica , Termodinâmica
12.
J Chem Theory Comput ; 15(5): 3134-3152, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-30916955

RESUMO

The Automatic Rhodopsin Modeling (ARM) protocol has recently been proposed as a tool for the fast and parallel generation of basic hybrid quantum mechanics/molecular mechanics (QM/MM) models of wild type and mutant rhodopsins. However, in its present version, input preparation requires a few hours long user's manipulation of the template protein structure, which also impairs the reproducibility of the generated models. This limitation, which makes model building semiautomatic rather than fully automatic, comprises four tasks: definition of the retinal chromophore cavity, assignment of protonation states of the ionizable residues, neutralization of the protein with external counterions, and finally congruous generation of single or multiple mutations. In this work, we show that the automation of the original ARM protocol can be extended to a level suitable for performing the above tasks without user's manipulation and with an input preparation time of minutes. The new protocol, called a-ARM, delivers fully reproducible (i.e., user independent) rhodopsin QM/MM models as well as an improved model quality. More specifically, we show that the trend in vertical excitation energies observed for a set of 25 wild type and 14 mutant rhodopsins is predicted by the new protocol better than when using the original. Such an agreement is reflected by an estimated (relative to the probed set) trend deviation of 0.7 ± 0.5 kcal mol-1 (0.03 ± 0.02 eV) and mean absolute error of 1.0 kcal mol-1 (0.04 eV).

13.
J Chem Theory Comput ; 15(3): 1915-1923, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30721054

RESUMO

A methodology for the automatic production of quantum mechanical/molecular mechanical (QM/MM) models of retinal-binding rhodopsin proteins and subsequent prediction of their spectroscopic properties has been proposed recently by some of the authors. The technology employed for the evaluation of the excitation energies is called Automatic Rhodopsin Modeling (ARM), and it involves the use of the complete active space self-consistent field (CASSCF) method followed by a multiconfiguration second-order perturbation theory (in particular, CASPT2) calculation of external correlation energies. Although it was shown that ARM is capable of successfully reproducing and predicting spectroscopic property trends in chromophore-embedding protein sets, practical applications of such technology are limited by the high computational costs of the multiconfiguration perturbation theory calculations. In the present work we benchmark the more affordable multiconfiguration pair-density functional theory (MC-PDFT) method whose accuracy has been recently validated for retinal chromophores in the gas phase, indicating that MC-PDFT could potentially be used to analyze large (e.g., few hundreds) sets of rhodopsin proteins. Here, we test this theory for a set of rhodopsin QM/MM models whose experimental absorption maxima (λ a max) have been measured. The results indicate that MC-PDFT may be employed to calculate λ a max values for this important class of photoresponsive proteins.


Assuntos
Bactérias/química , Bacteriorodopsinas/química , Rodopsina/química , Animais , Bases de Dados de Proteínas , Humanos , Modelos Moleculares , Conformação Proteica , Teoria Quântica , Termodinâmica
14.
J Phys Chem A ; 123(9): 1710-1719, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30753077

RESUMO

In recent years, the potential energy surfaces of the penta-2,4-dieniminium cation have been investigated using several electronic structure methods. The resulting pool of geometrical, electronic, and energy data provides a suitable basis for the construction of a topographically correct analytical model of the molecule force field and, therefore, for a better understanding of this class of molecules, which includes the chromophore of visual pigments. In the present contribution, we report the construction of such a model for regions of the force field that drive the photochemical and thermal isomerization of the central double bound of the cation. While previous models included only two modes, it is here shown that the proposed three-mode model and corresponding set of parameters are able to reproduce the complex topographical and electronic structure features seen in electronically correlated data obtained at the XMCQDPT2//CASSCF/6-31G* level of theory.


Assuntos
Retina/química , Elétrons , Modelos Moleculares , Estrutura Molecular , Teoria Quântica
15.
Proc Natl Acad Sci U S A ; 115(39): E9051-E9057, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30194231

RESUMO

Natural light-harvesting is performed by pigment-protein complexes, which collect and funnel the solar energy at the start of photosynthesis. The identity and arrangement of pigments largely define the absorption spectrum of the antenna complex, which is further regulated by a palette of structural factors. Small alterations are induced by pigment-protein interactions. In light-harvesting systems 2 and 3 from Rhodoblastus acidophilus, the pigments are arranged identically, yet the former has an absorption peak at 850 nm that is blue-shifted to 820 nm in the latter. While the shift has previously been attributed to the removal of hydrogen bonds, which brings changes in the acetyl moiety of the bacteriochlorophyll, recent work has shown that other mechanisms are also present. Using computational and modeling tools on the corresponding crystal structures, we reach a different conclusion: The most critical factor for the shift is the curvature of the macrocycle ring. The bending of the planar part of the pigment is identified as the second-most important design principle for the function of pigment-protein complexes-a finding that can inspire the design of novel artificial systems.


Assuntos
Alphaproteobacteria/química , Proteínas de Bactérias/química , Bacterioclorofilas/química , Complexos de Proteínas Captadores de Luz/química , Alphaproteobacteria/metabolismo , Proteínas de Bactérias/metabolismo , Bacterioclorofilas/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Fotossíntese/fisiologia
16.
J Phys Chem B ; 121(22): 5499-5508, 2017 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-28485594

RESUMO

Light-harvesting system 2 (LH2) executes the primary processes of photosynthesis in purple bacteria; photon absorption, and energy transportation to the reaction center. A detailed mechanistic insight into these operations is obscured by the complexity of the light-harvesting systems, particularly by the chromophore-environment interaction. In this work, we focus on the effects of the protein residues that are ligated to the bacteriochlorophylls (BChls) and construct potential energy surfaces of the ground and first optically excited state for the various BChl-residue systems where we in each case consider two degrees of freedom in the intermolecular region. We find that the excitation energies are only slightly affected by the considered modes. In addition, we see that axial ligands and hydrogen-bonded residues have opposite effects on both excitation energies and oscillator strengths by comparing to the isolated BChls. Our results indicate that only a small part of the chromophore-environment interaction can be associated with the intermolecular region between a BChl and an adjacent residue, but that it may be possible to selectively raise or lower the excitation energy at the axial and planar residue positions, respectively.


Assuntos
Bacterioclorofilas/química , Complexos de Proteínas Captadores de Luz/química , Teoria Quântica , Bacterioclorofilas/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Modelos Moleculares
17.
ACS Omega ; 2(1): 193-203, 2017 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457221

RESUMO

Over the last decade, we have investigated and exploited the photophysical properties of triangulenium dyes. Azadioxatriangulenium (ADOTA) and diazaoxatriangulenium (DAOTA), in particular, have features that make them useful in various fluorescence-based technologies (e.g., bioimaging). Through our work with ADOTA and DAOTA, we became aware that the reported fluorescence quantum yields (ϕfl) for these dyes are lower than their actual values. We thus set out to further investigate the fundamental structure-property relationships in these unique conjugated cationic systems. The nonradiative processes in the systems were explored using transient absorption spectroscopy and time-resolved emission spectroscopy in combination with computational chemistry. The influence of molecular oxygen on the fluorescence properties was explored, and the singlet oxygen sensitization efficiencies of ADOTA and DAOTA were determined. We conclude that, for these dyes, the amount of nonradiative deactivation of the first excited singlet state (S1) of the azaoxa-triangulenium fluorophores is low, that the rate of such deactivation is slower than what is observed in common cationic dyes, that there are no observable radiative transitions occurring from the first excited triplet state (T1) of these dyes, and that the efficiency of sensitized singlet oxygen production is low (Ï•Δ ≤ 10%). These photophysical results provide a solid base upon which technological applications of these fluorescent dyes can be built.

18.
PeerJ ; 4: e2698, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27904805

RESUMO

Benign prostatic hyperplasia is a common disease in men aged over 50 years old, with an incidence increasing to more than 80% over the age of 70, that is increasingly going to attract pharmaceutical interest. Within conventional therapies, such as α-adrenoreceptor antagonists and 5α-reductase inhibitor, there is a large requirement for treatments with less adverse events on, e.g., blood pressure and sexual function: phytotherapy may be the right way to fill this need. Serenoa repens standardized extract has been widely studied and its ability to reduce lower urinary tract symptoms related to benign prostatic hyperplasia is comprehensively described in literature. An innovative investigation on the mechanism of inhibition of 5α-reductase by Serenoa repens extract active principles is proposed in this work through computational methods, performing molecular docking simulations on the crystal structure of human liver 5ß-reductase. The results confirm that both sterols and fatty acids can play a role in the inhibition of the enzyme, thus, suggesting a competitive mechanism of inhibition. This work proposes a further confirmation for the rational use of herbal products in the management of benign prostatic hyperplasia, and suggests computational methods as an innovative, low cost, and non-invasive process for the study of phytocomplex activity toward proteic targets.

19.
J Chem Theory Comput ; 12(12): 5979-5989, 2016 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-27759961

RESUMO

The modeling of vibrations in optical spectra relies heavily on the simplifications brought about by using harmonic oscillators. However, realistic molecular systems can deviate substantially from this description. We develop two methods which show that the extension to arbitrarily shaped potential energy surfaces is not only straightforward, but also efficient. These methods are applied to an electronic two-level system with potential energy surfaces of polynomial form and used to study anharmonic features such as the zero-phonon line shape and mirror-symmetry breaking between absorption and fluorescence spectra. The first method, which constructs vibrational wave functions as linear combinations of the harmonic oscillator wave functions, is shown to be extremely robust and can handle large anharmonicities. The second method uses the cumulant expansion, which is readily solved, even at high orders, thanks to an ideally suited matrix theorem.

20.
J Phys Chem A ; 120(39): 7694-7703, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27598315

RESUMO

In this study a number of chromophores based on boron subphthalocyanines are investigated for use in the future design of organic photovoltaic devices based on molecular triad systems. The computational study is performed at the TD-DFT CAM-B3LYP/6-311G(d) level of theory. The absorption spectra of these chromophores are simulated using TD-DFT and compared to experimental results. All investigated chromophores absorb light in the visible range and thus are suitable for absorption of sunlight in solar cell applications. On the basis of energy-level alignments, suitable combinations of moieties for a molecular triad system are proposed. The molecular triads will be used in future work as the functional part of organic photovoltaic devices, where the chromophore will be used both to absorb the incoming solar radiation and to increase the distance between the separated charges on donor and acceptor units to increase the lifetime of the charge-separated state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA