Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 149(16)2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35904071

RESUMO

The perception of noxious environmental stimuli by nociceptive sensory neurons is an essential mechanism for the prevention of tissue damage. Etv4 is a transcriptional factor expressed in most nociceptors in dorsal root ganglia (DRG) during the embryonic development. However, its physiological role remains unclear. Here, we show that Etv4 ablation results in defects in the development of the peripheral peptidergic projections in vivo, and in deficits in axonal elongation and growth cone morphology in cultured sensory neurons in response to NGF. From a mechanistic point of view, our findings reveal that NGF regulates Etv4-dependent gene expression of molecules involved in extracellular matrix (ECM) remodeling. Etv4-null mice were less sensitive to noxious heat stimuli and chemical pain, and this behavioral phenotype correlates with a significant reduction in the expression of the pain-transducing ion channel TRPV1 in mutant mice. Together, our data demonstrate that Etv4 is required for the correct innervation and function of peptidergic sensory neurons, regulating a transcriptional program that involves molecules associated with axonal growth and pain transduction.


Assuntos
Fator de Crescimento Neural , Nociceptividade , Proteínas Proto-Oncogênicas c-ets/metabolismo , Animais , Gânglios Espinais/metabolismo , Camundongos , Fator de Crescimento Neural/genética , Nociceptividade/fisiologia , Dor/metabolismo , Células Receptoras Sensoriais/metabolismo
2.
Development ; 148(16)2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34338291

RESUMO

Negative feedback loops represent a regulatory mechanism that guarantees that signaling thresholds are compatible with a physiological response. Previously, we established that Lrig1 acts through this mechanism to inhibit Ret activity. However, it is unclear whether other Lrig family members play similar roles. Here, we show that Lrig1 and Lrig3 are co-expressed in Ret-positive mouse dorsal root ganglion (DRG) neurons. Lrig3, like Lrig1, interacts with Ret and inhibits GDNF/Ret signaling. Treatment of DRG neurons with GDNF ligands induces a significant increase in the expression of Lrig1 and Lrig3. Our findings show that, whereas a single deletion of either Lrig1 or Lrig3 fails to promote Ret-mediated axonal growth, haploinsufficiency of Lrig1 in Lrig3 mutants significantly potentiates Ret signaling and axonal growth of DRG neurons in response to GDNF ligands. We observe that Lrig1 and Lrig3 act redundantly to ensure proper cutaneous innervation of nonpeptidergic axons and behavioral sensitivity to cold, which correlates with a significant increase in the expression of the cold-responsive channel TrpA1. Together, our findings provide insights into the in vivo functions through which Lrig genes control morphology, connectivity and function in sensory neurons.


Assuntos
Axônios/metabolismo , Epiderme/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas c-ret/metabolismo , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais/genética , Animais , Animais Recém-Nascidos , Linhagem Celular Transformada , Gânglios Espinais/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Células HEK293 , Humanos , Ligantes , Masculino , Glicoproteínas de Membrana/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Neurônios Motores/metabolismo , Proteínas do Tecido Nervoso/genética , Crescimento Neuronal/genética , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Transfecção
3.
Cell Mol Life Sci ; 77(11): 2217-2233, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31440771

RESUMO

The molecular mechanisms that control the biosynthetic trafficking, surface delivery, and degradation of TrkA receptor are essential for proper nerve growth factor (NGF) function, and remain poorly understood. Here, we identify Tetraspanin1 (Tspan1) as a critical regulator of TrkA signaling and neuronal differentiation induced by NGF. Tspan1 is expressed by developing TrkA-positive dorsal root ganglion (DRG) neurons and its downregulation in sensory neurons inhibits NGF-mediated axonal growth. In addition, our data demonstrate that Tspan1 forms a molecular complex with the immature form of TrkA localized in the endoplasmic reticulum (ER). Finally, knockdown of Tspan1 reduces the surface levels of TrkA by promoting its preferential sorting towards the autophagy/lysosomal degradation pathway. Together, these data establish a novel homeostatic role of Tspan1, coordinating the biosynthetic trafficking and degradation of TrkA, regardless the presence of NGF.


Assuntos
Fator de Crescimento Neural/metabolismo , Neurogênese , Proteostase , Receptor trkA/metabolismo , Transdução de Sinais , Tetraspaninas/metabolismo , Animais , Feminino , Células HEK293 , Humanos , Masculino , Células PC12 , Ratos , Ratos Wistar
4.
Front Cell Neurosci ; 13: 135, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024262

RESUMO

Brain-derived neurotrophic factor (BDNF) is a neurotrophin that has pleiotropic effects on neuronal morphology and synaptic plasticity that underlie hippocampal circuit development and cognition. Recent advances established that BDNF function is controlled and diversified by molecular and cellular mechanisms including trafficking and subcellular compartmentalization of different Bdnf mRNA species, pre- vs. postsynaptic release of BDNF, control of BDNF signaling by tropomyosin receptor kinase B (TrkB) receptor interactors and conversion of pro-BDNF to mature BDNF and BDNF-propeptide. Defects in these regulatory mechanisms affect dendritic spine formation and morphology of pyramidal neurons as well as synaptic integration of newborn granule cells (GCs) into preexisting circuits of mature hippocampus, compromising the cognitive function. Here, we review recent findings describing novel dynamic mechanisms that diversify and locally control the function of BDNF in hippocampal neurons.

5.
Physiol Behav ; 198: 1-10, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30296403

RESUMO

Alterations in the social environment, such as isolating an individual that would normally live in a social group, can generate physiological responses that compromise an individual's capacity to learn. To investigate this, we tested whether social isolation impairs learning skills in the rainbow trout. We show that rainbow trout can achieve an active avoidance (AA) learning program with inter-individual variability. Moreover, c-Fos expression in dorsomedial telencephalon (Dm) correlates with the AA performance, indicating that this structure is involved in this cognitive task. Given that Dm participates in AA learning and this region is under plastic remodelling by addition of new-born neurons, we tested whether social isolation impinges on adult neurogenesis and, consequently, on the Dm cognitive outcome. Trout were reared for four weeks in control or isolated conditions. We found that social isolation diminished the percentage of adult-born neurons that are being incorporated into Dm network. Interestingly, the same isolation treatment also induced a severe deficit in the AA performance. Our results demonstrate a structure-to-function relationship between the Dm and the learning ability in an AA task, indicate that social isolation reduces the incorporation of adult-born neurons into Dm, and show that social isolation impairs the Dm-related cognitive function.


Assuntos
Aprendizagem da Esquiva/fisiologia , Comportamento Animal/fisiologia , Neurogênese/fisiologia , Isolamento Social , Telencéfalo/metabolismo , Animais , Neurônios/metabolismo , Oncorhynchus mykiss , Proteínas Proto-Oncogênicas c-fos/metabolismo , Meio Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA