Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Adv Sci (Weinh) ; 11(21): e2401070, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38526150

RESUMO

Herein, a robust microporous aluminum tetracarboxylate framework, MIL-120(Al)-AP, (MIL, AP: Institute Lavoisier and Ambient Pressure synthesis, respectively) is reported, which exhibits high CO2 uptake (1.9 mmol g-1 at 0.1 bar, 298 K). In situ Synchrotron X-ray diffraction measurements together with Monte Carlo simulations reveal that this structure offers a favorable CO2 capture configuration with the pores being decorated with a high density of µ2-OH groups and accessible aromatic rings. Meanwhile, based on calculations and experimental evidence, moderate host-guest interactions Qst (CO2) value of MIL-120(Al)-AP (-40 kJ mol-1) is deduced, suggesting a relatively low energy penalty for full regeneration. Moreover, an environmentally friendly ambient pressure green route, relying on inexpensive raw materials, is developed to prepare MIL-120(Al)-AP at the kilogram scale with a high yield while the Metal- Organic Framework (MOF) is further shaped with inorganic binders as millimeter-sized mechanically stable beads. First evidences of its efficient CO2/N2 separation ability are validated by breakthrough experiments while operando IR experiments indicate a kinetically favorable CO2 adsorption over water. Finally, a techno-economic analysis gives an estimated production cost of ≈ 13 $ kg-1, significantly lower than for other benchmark MOFs. These advancements make MIL-120(Al)-AP an excellent candidate as an adsorbent for industrial-scale CO2 capture processes.

2.
N Biotechnol ; 51: 1-7, 2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-30708187

RESUMO

Fructo-oligosaccharide (FOS) mixtures produced by fermentation contain large amounts of non-prebiotic sugars. Here we propose a mixed culture of Aureobasidium pullulans and Saccharomyces cerevisiae cells to produce FOS and consume the small saccharides simultaneously, thereby increasing FOS purity in the mixture. The use of immobilised A. pullulans in co-culture with encapsulated S. cerevisiae, inoculated after 10 h fermentation, enhanced FOS production in a 5 L bioreactor. Using this strategy, a maximal FOS concentration of 119 g L-1, and yield of 0.59 gFOS gsucrose-1, were obtained after 20 h fermentation, increasing FOS productivity from about 4.9 to 5.9 gFOS L-1 h-1 compared to a control fermentation of immobilized A. pullulans in monoculture. In addition, the encapsulated S. cerevisiae cells were able to decrease the glucose in the medium to about 7.6% (w/w) after 63 h fermentation. This provided a final fermentation mixture with 2.0% (w/w) sucrose and a FOS purity of over 67.0% (w/w). Moreover, a concentration of up to 58.0 g L-1 of ethanol was obtained through the enzymatic transformation of glucose. The resulting pre-purified FOS mixture could improve the separation and purification of FOS in downstream treatments, such as simulated moving bed chromatography.


Assuntos
Ascomicetos/citologia , Ascomicetos/metabolismo , Reatores Biológicos , Técnicas de Cocultura , Frutose/biossíntese , Oligossacarídeos/biossíntese , Fermentação , Frutose/química , Oligossacarídeos/química
3.
ChemSusChem ; 10(7): 1419-1426, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28160428

RESUMO

The energy-storage capacities of a series of water-stable porous metal-organic frameworks, based on high-valence metal cations (Al3+ , Fe3+ , Cr3+ , Ti4+ , Zr4+ ) and polycarboxylate linkers, were evaluated under the typical conditions of seasonal energy-storage devices. The results showed that the microporous hydrophilic Al-dicarboxylate MIL-160(Al) exhibited one of the best performances. To assess the properties of this material for space-heating applications on a laboratory pilot scale with an open reactor, a new synthetic route involving safer, greener conditions was developed. This led to the production of MIL-160(Al) on a 400 g scale, before the material was shaped into pellets through a wet-granulation method. The material exhibited a very high energy-storage capacity for a physical-sorption material (343 Wh kg-1 ), which is in full agreement with the predicted value.


Assuntos
Alumínio/química , Temperatura Alta , Interações Hidrofóbicas e Hidrofílicas , Compostos Organometálicos/química , Compostos Organometálicos/síntese química , Técnicas de Química Sintética , Modelos Moleculares , Conformação Molecular
4.
Chem Commun (Camb) ; 49(86): 10082-4, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-24045671

RESUMO

A combination of adsorption, microcalorimetry, infra-red spectroscopy and modeling has been implemented to reveal the potential of the H2S resistant amino-functionalized Ti MOF MIL-125 porous solid for the concomitant elimination of CO2 and H2S from biogas and natural gas.


Assuntos
Aminas/química , Técnicas de Química Analítica/métodos , Gases/química , Titânio/química , Adsorção , Calorimetria , Dióxido de Carbono/química , Sulfeto de Hidrogênio/química , Raios Infravermelhos , Fenômenos de Química Orgânica , Porosidade
6.
Langmuir ; 29(10): 3328-38, 2013 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-23346958

RESUMO

The adsorption of carbon dioxide, methane, and their mixtures in nanoporous carbons in the presence of water is studied using experiments and molecular simulations. Both the experimental and numerical samples contain polar groups that account for their partially hydrophilicity. For small amounts of adsorbed water, although the shape of the adsorption isotherms remain similar, both the molecular simulations and experiments show a slight decrease in the CO2 and CH4 adsorption amounts. For large amounts of adsorbed water, the experimental data suggest the formation of methane or carbon dioxide clathrates in agreement with previous work. In contrast, the molecular simulations do not account for the formation of such clathrates. Another important difference between the simulated and experimental data concerns the number of water molecules that desorb upon increasing the pressure of carbon dioxide and methane. Although the experimental data indicate that water remains adsorbed upon carbon dioxide and methane adsorption, the molecular simulations suggest that 40 to 75% of the initial amount of adsorbed water desorbs with carbon dioxide or methane pressure. Such discrepancies show that differences between the simulated and experimental samples are crucial to account for the rich phase behavior of confined water-gas systems. Our simulations for carbon dioxide-methane coadsorption in the presence of water suggest that the pore filling is not affected by the presence of water and that adsorbed solution theory can be applied for pressures as high as 15 MPa.

7.
Dalton Trans ; 41(14): 4060-6, 2012 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-22378060

RESUMO

Hydrogen sulfide is an extremely toxic gas that is also of great interest for biological applications when delivered in the correct amount and at the desired rate. Here we show that the highly porous metal-organic frameworks with the CPO-27 structure can bind the hydrogen sulfide relatively strongly, allowing the storage of the gas for at least several months. Delivered gas is biologically active in preliminary vasodilation studies of porcine arteries, and the structure of the hydrogen sulfide molecules inside the framework has been elucidated using a combination of powder X-ray diffraction and pair distribution function analysis.


Assuntos
Portadores de Fármacos/administração & dosagem , Sulfeto de Hidrogênio/administração & dosagem , Compostos de Zinco/administração & dosagem , Animais , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/fisiologia , Portadores de Fármacos/química , Estabilidade de Medicamentos , Sulfeto de Hidrogênio/química , Técnicas In Vitro , Difração de Pó , Suínos , Vasodilatação/efeitos dos fármacos , Difração de Raios X , Compostos de Zinco/química
8.
Dalton Trans ; 41(14): 4052-9, 2012 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-22358076

RESUMO

Carbon dioxide is the main undesirable compound present in raw natural gas and biogas. Physisorption based adsorption processes such as pressure swing adsorption (PSA) are one of the solutions to selectively adsorb CO(2) from CH(4). Some hybrid crystalline porous materials that belong to the family of metal-organic frameworks (MOFs) show larger CO(2) adsorption capacity compared to the usual industrial adsorbents, such as zeolites and most activated carbons, which makes them potentially promising for such applications. However, their selectivity values have been most often determined using only single gas adsorption measurements combined with simple macroscopic thermodynamic models or by means of molecular simulations based on generic forcefields. The transfer of this systematic approach to all MOFs, whatever their complex physico-chemical features, needs to be considered with caution. In contrast, direct co-adsorption measurements collected on these new materials are still scarce. The aim of this study is to perform a complete analysis of the CO(2)-CH(4) co-adsorption in the mesoporous MIL-100(Cr) MOF (MIL stands for Materials from Institut Lavoisier) by means of a synergic combination of outstanding experimental and modelling tools. This solid has been chosen both for its fundamental interests, given its very large CO(2) adsorption capacities and its complexity with a combination of micropores and mesopores and the existence of unsaturated accessible metal sites. The predictions obtained by means of Grand Canonical Monte Carlo simulations based on generic forcefields as well as macroscopic thermodynamic (IAST, RAST) models will be compared to direct the co-adsorption experimental data (breakthrough curve and volumetric measurements).


Assuntos
Poluentes Atmosféricos/química , Dióxido de Carbono/química , Cromo/química , Metano/química , Adsorção , Poluição do Ar/prevenção & controle , Modelos Químicos , Termodinâmica
9.
ChemSusChem ; 4(10): 1420-30, 2011 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-21957051

RESUMO

The use of porous materials to eliminate volatile organic compounds (VOCs) has proven very effective towards achieving sustainability and environmental protection goals. The activity of zeolites and macro-mesoporous metal-oxide supports in the total oxidation of VOCs has been investigated, with and without noble-metal deposition, to develop highly active catalyst systems where the formation of by-products was minimal. The first catalysts employed were zeolites, which offered a good activity in the oxidation of VOCs, but were rapidly deactivated by coke deposition. The effects of the acido-basicity and ionic exchange of these zeolites showed that a higher basicity was related to exchanged ions with lower electronegativities, resulting in better catalytic performances in the elimination of VOCs. Following on from this work, noble metals were deposited onto macro-mesoporous metal-oxide supports to form mono and bimetallic catalysts. These were then tested in the oxidation of toluene to study their catalytic performance and their deactivation process. PdAu/TiO(2) and PdAu/TiO(2) -ZrO(2) 80/20 catalysts demonstrated the best activity and life span in the oxidation of toluene and propene and offered the lowest temperatures for a 50 % conversion of VOCs and the lowest coke content after catalytic testing. Different characterization techniques were employed to explain the changes occurring in catalyst structure during the oxidation of toluene and propene.


Assuntos
Poluentes Atmosféricos/química , Recuperação e Remediação Ambiental/métodos , Metais/química , Óxidos/química , Compostos Orgânicos Voláteis/química , Catálise , Oxirredução , Porosidade
10.
Langmuir ; 27(3): 1015-24, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21190347

RESUMO

The adsorption of carbon dioxide and methane in nanoporous carbons in the presence of water is studied using experiments and molecular simulations. For all amounts of adsorbed water molecules, the adsorption isotherms for carbon dioxide and methane resemble those obtained for pure fluids. The pore filling mechanism does not seem to be affected by the presence of the water molecules. Moreover, the pressure at which the maximum adsorbed amount of methane or carbon dioxide is reached is nearly insensitive to the loading of preadsorbed water molecules. In contrast, the adsorbed amount of methane or carbon dioxide decreases linearly with the number of guest water molecules. Typical molecular configurations obtained using molecular simulation indicate that the water molecules form isolated clusters within the host porous carbon due to the nonfavorable interaction between carbon dioxide or methane and water.

11.
Chem Soc Rev ; 40(2): 550-62, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21180728

RESUMO

Hybrid porous solids, with their tunable structures, their multifunctional properties and their numerous applications, are currently topical, particularly in the domain of adsorption and storage of greenhouse gases. Most of the data reported so far concern the performances of these solids in this domain, particularly in terms of adsorbed amounts of gas but do not explain at the atomic level why and how adsorption and storage occur. From a combination of structural, spectroscopic, thermodynamic experiments and of molecular simulations, this tutorial review proposes answers to these open questions with a special emphasis on CO(2) and CH(4) storage by some rigid and flexible hybrid porous materials.

12.
Langmuir ; 25(23): 13275-8, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19874010

RESUMO

Triamine-grafted pore-expanded mesoporous silica (TRI-PE-MCM-41) exhibited high CO(2) and H(2)S adsorption capacity as well as high selectivity toward acid gases versus CH(4). Unlike physical adsorbents such as zeolites and activated carbons, the presence of moisture in the feed enhanced the CO(2) removal capability of TRI-PE-MCM-41 without altering its H(2)S adsorption capacity. Thus, depending on the feed composition, CO(2) and H(2)S may be removed over TRI-PE-MCM-41 simultaneously or sequentially. These findings are suitable for acid gas separation from CH(4)-containing mixtures such as natural gas and biogas.


Assuntos
Aminas/química , Dióxido de Carbono/isolamento & purificação , Combustíveis Fósseis/análise , Sulfeto de Hidrogênio/isolamento & purificação , Dióxido de Silício/química , Porosidade
13.
J Am Chem Soc ; 131(25): 8775-7, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19505146

RESUMO

Hydrogen sulfide gravimetric isotherm adsorption measurements were carried out on MIL-53(Al, Cr, Fe), MIL-47(V), MIL-100(Cr), and MIL-101(Cr) metal-organic frameworks (MOFs). A two-step adsorption mechanism related to a breathing effect was observed for MIL-53 terephthalate-based MOFs. Methane adsorption measurements highlighted the regenerability of MIL-53(Al, Cr) and MIL-47(V) MOFs after H(2)S treatment, whereas MIL-100 and MIL-101 CH(4) adsorption capacities were significantly decreased.

14.
Langmuir ; 24(14): 7245-50, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18355101

RESUMO

Mesoporous MOFs MIL-100 and MIL-101 adsorb huge amounts of CO2 and CH4. Characterization was performed using both manometry and gravimetry in different laboratories for isotherms coupled with microcalorimetry and FTIR to specify the gas-solid interactions. In particular, the uptake of carbon dioxide in MIL-101 has been shown to occur with a record capacity of 40 mmol g(-1) or 390 cm3STP cm(-3) at 5 MPa and 303 K.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA